
Dynamic Tracing
with DTrace
SystemTap

Sergey Klyaus

Copyright © 2011-2016 Sergey Klyaus

This work is licensed under the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 License. To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 559
Nathan Abbott Way, Stanford, California 94305, USA.

https://creativecommons.org/licenses/by-nc-sa/3.0/

Table of contents

7Introduction
 . 7Foreword

 . 9Typographic conventions
 . 12TSLoad workload generator

 . 14Operating system Kernel

15Module 1: Dynamic tracing tools. dtrace and stap tools
 . 15Tracing

 . 16Dynamic tracing
 . 17DTrace

 . 19SystemTap
 . 22Safety and errors

 . 23Stability

25Module 2: Dynamic tracing languages
 . 25Introduction

 . 27Probes
 . 33Arguments

 . 34Context
 . 35Predicates

 . 37Types and Variables
 . 40Pointers

 . 43Strings and Structures
 . 44Exercise 1

 . 44Associative arrays and aggregations
 . 48Time

 . 48Printing and speculations
 . 50Tapsets translators

 . 52Exercise 2

54Module 3: Principles of dynamic tracing
 . 54Applying tracing

 . 55Dynamic code analysis
 . 61Profiling

 . 65Performance analysis
 . 66Pre- and post-processing

 . 70Vizualization

74Module 4: Operating system kernel tracing
 . 74Process management

3

 . 86Exercise 3
 . 87Process scheduler

 . 105Virtual Memory
 . 116Exercise 4

 . 116Virtual File System
 . 122Block Input-Output

 . 131Asynchronicity in kernel
 . 132Exercise 5

 . 134Network Stack
 . 138Synchronization primitives

 . 143Interrupt handling and deferred execution

146Module 5: Application tracing
 . 146Userspace process tracing

 . 149Unix C library
 . 152Exercise 6

 . 153Java Virtual Machine
 . 160Non-native languages

 . 165Web applications
 . 172Exercise 7

173Appendix A. Exercise hints and solutions
 . 173Exercise 1
 . 175Exercise 2
 . 176Exercise 3
 . 184Exercise 4
 . 187Exercise 5
 . 190Exercise 6
 . 191Exercise 7

193Appendix B. Lab setup
 . 193Setting up Operating Systems

 . 194iSCSI
 . 195Web application stack

200Appendix C. Cheatsheet
 . 200Cheatsheet

4

SystemTap example scripts

 . 47scripts/stap/wstat.stp
 . 51scripts/stap/tapset/lstat.stp

 . 52scripts/stap/lstat.stp
 . 58scripts/stap/callgraph.stp
 . 75scripts/stap/dumptask.stp

 . 84scripts/stap/proc.stp
 . 100scripts/stap/cfstrace.stp

 . 113scripts/stap/pagefault.stp
 . 128scripts/stap/scsitrace.stp
 . 141scripts/stap/wqtrace.stp
 . 150scripts/stap/pthread.stp
 . 155scripts/stap/hotspot.stp

 . 162scripts/stap/pymalloc.stp
 . 165scripts/stap/pycode.stp

 . 169scripts/stap/web.stp
 . 174scripts/stap/opentrace.stp
 . 176scripts/stap/openaggr.stp

 . 176scripts/stap/dumptask-lab3.stp
 . 182scripts/stap/forktime.stp

 . 184scripts/stap/pfstat.stp
 . 187scripts/stap/kmemstat.stp

 . 187scripts/stap/deblock.stp
 . 188scripts/stap/readahead.stp

 . 191scripts/stap/mtxtime.stp
 . 191scripts/stap/topphp.stp

DTrace example scripts

 . 47scripts/dtrace/wstat.d
 . 50scripts/dtrace/stat.d

 . 60scripts/dtrace/callgraph.d
 . 80scripts/dtrace/dumptask.d

 . 85scripts/dtrace/proc.d
 . 91scripts/dtrace/tstrace.d

 . 110scripts/dtrace/pagefault.d
 . 125scripts/dtrace/sdtrace.d
 . 143scripts/dtrace/cvtrace.d
 . 151scripts/dtrace/pthread.d
 . 155scripts/dtrace/hotspot.d

 . 162scripts/dtrace/pymalloc.d
 . 164scripts/dtrace/pycode.d

 . 171scripts/dtrace/web.d

5

 . 174scripts/dtrace/opentrace.d
 . 175scripts/dtrace/openaggr.d

 . 179scripts/dtrace/dumptask-lab3.d
 . 183scripts/dtrace/forktime.d

 . 185scripts/dtrace/pfstat.d
 . 186scripts/dtrace/kmemstat.d

 . 189scripts/dtrace/deblock.d
 . 189scripts/dtrace/readahead.d
 . 190scripts/dtrace/mtxtime.d

 . 192scripts/dtrace/topphp.d

Other source files

 . 12book/intro/experiment.json
 . 67scripts/src/opentrace.py

 . 69scripts/src/openproc.py
 . 86scripts/src/lab3.c

 . 94experiments/duality/experiment.json
 . 96experiments/concurrency/experiment.json

 . 154scripts/src/java/Greeting.java
 . 154scripts/src/java/GreetingThread.java

 . 154scripts/src/java/Greeter.java
 . 159scripts/src/jsdt/Greeting.java

 . 159scripts/src/jsdt/GreetingProvider.java
 . 159scripts/src/jsdt/JSDT.java

 . 163scripts/dtrace/pycode.h

6

Introduction

Foreword
While I was working on my bachelor thesis, I discovered that code analysis task is a key

step on the path towards solving software problems: aborts and coredumps, excessive (or
unreasonably small) resource consumptions, etc. It was devoted to microkernel architecture,
and when I found it inadequately documented, I had to dive deep down to their sources.

After that, I started to apply code reading on my work, because sources always have most
actual and full information than user documentation. Sources better explain origin of an error
than documentation. For example, take a look at UFS documentation for Solaris 10:

-b bsize The logical block size of the file system in bytes, either 4096 or 8192. The default is 8192. The
sun4u architecture does not support the 4096 block size.

Real condition that describes block size limits in UFS is a bit more complex:
928 if (fsp->fs_bsize > MAXBSIZE || fsp->fs_frag > MAXFRAG ||
 929 fsp->fs_bsize fs_bsize

So, more accurate condition that applies to all architectures may be described as: block size
should be greater or equal page size, but not exceed 8192 bytes (MAXBSIZE macro) and also
be larger than superblock. I have to admit, that sometimes I was too hasty to look into code
and ignored clues that documentation provides, but in most cases source code analysis
approach paid off, especially in hard ones.

Information extraction from source code alone is called static code analysis. This method is
not sufficient, because you cannot look into source of highly-universal system like Linux
Kernel without having in mind what requests it will process. Otherwise, we would have to
process all code branches, but that dramatically increases complexity of code analysis.
Because of that, you have to run experiments sometimes and perform dynamic code analysis.
Through dynamic analysis you will cut out unused code paths and improve your
understanding of a program.

While I was working on my thesis, I used Bochs simulator which can generated giant
traces: one line per assembly instructions. Fortunately, modern operating systems have much
more flexible tools: dynamic instrumentation tools, and that is the topic of this book.

I wrote first useful DTrace script for the request in which customer encountered the
following panic:

7Introduction

http://docs.oracle.com/cd/E23823_01/html/816-5166/newfs-1m.html

unix: [ID 428783 kern.notice] vn_rele: vnode ref count 0

As you can see from the message, reference counter decreases one more time (for example,
if you closed file twice). Of course, if you call close() twice, that won't cause system panic,
so we have to deal with more specific race condition or a simple bug when vn_rele() is
called twice. To unveil that issue, I had to write DTrace script, that traced close() and
vn_rele() calls (and also some socket stuff).

While I was getting familiar with Linux Kernel, I used DTrace competitor from Linux
World –- SystemTap. I began preparation of small workshop about DTrace and SystemTap in
2011, but I decided to add comments to each slide for my workshop. The amount of
comments was growing: I prepared introduction, chapter about script languages in DTrace
and SystemTap and description of process management in Linux and Solaris with dumptask
scripts. But amount of time that I spend to prepare "process management" topic had scared
me, and I decided that I couldn't write all topics about OS kernel architecture that I planned in
the beginning, so I stopped writing this book.

I returned to it in 2013. At the time, I was actively deconstructing CFS scheduler in Linux,
so it made easier to write next architecture topic: "process scheduler". I had some experience
with ZFS internals, so writing topics about block input-output was easy too. Eventually, I got
interest in web application performance –- that gave ground to fifth chapter of this book. In
the end of 2013 draft of this book was prepared. Unfortunately, editing took more than year,
and another year –- translation.

Two specialists in the area of Solaris internals and DTrace: Jim Mauro and Brendan Gregg,
had published a book "DTrace Dynamic Tracing in Oracle® Solaris, Mac OS X, and
FreeBSD" in 2011. It has huge volume (more than thousand pages), and excellent description
of basic performance and computer architecture principles and how they reflected in DTrace
tracing capabilities. That book has a lot of one-liners that can be copied to the terminal and
start collecting data immediately. In our book we will concentrate our efforts in diving into
applications and kernel code and how it can be traced.

Book goals changed while it was written too that lead to inconsistencies. Originally it was
just with comments, I put everything looking like documentation as a links, but modules 4
and 5 have tables with probe names and its arguments. While book was written, SystemTap
was rapidly growing, Linux kernel is changing fast and Solaris became proprietary so it is
hard to maintain example compatibilities for several versions simultaneously. I've updated
examples for CentOS 7 and Solaris 11.2, but it'll probably break compatibility with older
versions.

Send me your feedback to myautneko+dtrace_stap@gmail.com.

Acknowledgements

I want to thank my advisor, Boris Timchenko, who gave me direction in the world of
Computer Science and whose influence was probably highest motivation to write this book.
He is probably first man who said word trace in my life. Thanks to Sergey Klimenkov and
Dmitry Sheshukov, my former supervisors at Tune-IT who were very supportive during
preparation of that book. It will also won't happen without Tune-IT demo equipment which
were used to try examples and lab assignments. Sergey is also an expert in Solaris
architecture, he is teaching Solaris Internals at Tune-IT education centre, and I was one of his
students there.

Introduction8

http://www.tune-it.ru/en

Thanks DTrace SystemTap community for creating such great instruments, especially
Brendan Gregg, who is first man who tamed power of these tools. Nan Xiao is a great person
who edited this book.

And finally, this book won't happen without my parents, who inspired my to always learn
new.

Typographic conventions
This is a book published on the web and so it doesn't have any "typography", but certain

parts of text are decorated with certain styles, thus we describe them in this section of the
book.

Meaning Example

First appearance of new terms Central processing unit (CPU) executes program code.

Multiple terms linked with each other CPU consists of execution units, cache and memory
controller.

Definition of a term Definition

According to this book,

A central processing unit (CPU) executes program
code.

Additional information about OS or
hardware internals

Information

Do not read me if you already know me the answer

Notes and some additional information Note

I am note and I am providing external information about the
implementation

Warning

I will warn you about some implementation quirks

Information that some of the examples or
code in the section is not suitable for
production use

DANGER!

Never try to do rm -rf / on your home computer.

Function name, or name of the probe, any
other entity that exist in source code

If you want to print a line on standard output in pure C, use
puts()

Chunk of the code that has to be used or
command to be executed

int main() {
 puts("Hello, world");
}

$ perl -se '
 print "Hello, $who" . "\n"
 ' -- -who=world

Placeholders in program examples are
covered in italic

puts(output-string)

9Introduction

Meaning Example

Large portions of example outputs may have
some output outlined with bold:

$ gcc hello.c -o hello
$./hello
Hello, world

Large program listing (if you want to show
it, press on "+" button)

Script file scripts/src/hellouser.py

import os
print "Hello, " + os.getenv('LOGNAME', 'anonymous') + '!'

Structural diagrams

Many kernel-related topics will contain structural diagrams which will represent kernel data
structures like this:

In this example two instances of mblk_t structure (which is typedef alias) are shown which
are linked together through pair of mblk_t pointers b_next and b_prev. Not all fields are
shown on this diagram, types are omitted, while order of fields may not match real one.
Following conventions are used in this type of diagrams:

Example code Diagram and explanation

struct structB {
 int field10;
 char field20;
};
struct structA {
 struct structB* bp;
 int field1;
}; structure structA points to instance of structB

struct structA;
struct structB {
 int field10;
 struct structA* ap;
};
struct structA {
 struct structB* bp;
 int field1;
};

structure structB contains backward pointer to structure
structA

struct structA {
 struct structB* bp;
 int field1;
 struct {
 char c1;
 char c2;
 } cobj;
};

structure structA has embedded structure (not neccessarily to be
anonymous)

Introduction10

b_next
b_prev

b_datap

mblk_t

b_rptr
b_wptr

b_next
b_prev

b_datap

mblk_t

b_rptr
b_wptr

structA
bp

field1
structB

field10
field20

structA
bp

field1
structB

field10
ap

structA
bp

field1

cobj
c1
c2

Example code Diagram and explanation

struct structB {
 int field10;
 char field20;
};
struct structA {
 struct structB* bp;
 int field1;
};

structure structA points to a dynamic array of structures
structB

struct structB {
 int field10;
 char field20;
 struct list_head node;
};
struct structA {
 struct list_head blist;
 int field1;
};

structure structA contains head of linked list of structB
instances
Various structure relations can be shown with this type of arrows:

• Single solid glyph shows node-to-node relations in linked list
• Double solid glyphs shows head-to-node relations in linked

list
• Double dashed glyphs shows various tree-like relations like

RB tree in Linux

Timeline diagrams

Timeline diagrams are used to show various processes that exist in traced system and chain
of events or operations happening with them and at the same time contains names of probes:

This diagram should be read like this:

• Thick colored arrows represent flow of some processes –- usually they are threads or
processes in a system. Gray arrows represent processes that are inactive for some reason
(usually, blocked and thus cannot be executed on CPU). Arrows corresponding to the same

11Introduction

structA
bp

field1
structB

field10
field20
field10
field20

...

structA
blist
field1

structB
field10

field20
node

structB
field10

field20
node

puts("Hi, Frank\n");

write(0, "Hi, Frank\n", 10);

getc(stdin);

Konsole
=> check_preempt_wakeup:
 se: curr tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-978205 vruntime: MIN+0
 se: se tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+41023325 vruntime: MIN+-6000000
 CFS_RQ: /
 nr_running: 2 load.weight: 2048 min_vruntime: 314380161884
 runnable_load_avg: 1067 blocked_load_avg: 0
 se: first tsexperiment/6063 SCHED_NORMAL
 se: rb: tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+41023325 vruntime: MIN+-6000000
<= check_preempt_wakeup

=> task_tick_fair J=4302675615 queued: 0
 sched_slice: 6000000
 se: curr tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-260001 vruntime: MIN+260001
 delta_exec: 42261531 delta: 6260001
<= task_tick_fair

user presses any key stdio.getc_done
stdio:::getc-done

stdio.getc_start
stdio:::getc-start

stdio.puts
stdio:::puts

H i , F r \na n k

process share same baseline.
• Thin black arrows demonstrate transfer of control between several operations. In this

example puts() call triggers write system call. Some of them may be omitted.
• Thin colored lines demonstrate subsequent chain of events unrelated to the process. In

this example phrase Hi, Frank arrives in Konsole window (graphic terminal).
• Text in dashed rectangles contains name of SystemTap and DTrace probes corresponding

to the operations or events happening with the process.

Virtual time axis beginning at the top and it is vertical.

DANGER!

Probes shown in this example are purely fictional.

TSLoad workload generator
During this course we will need to demonstrate created scripts on a real system. We will use

version 0.2 of TSLoad workload generator to do so. Its documentation and source code are
available on GitHub.

Experiment configuration files are kept in JSON format: each experiment starts with
directory with experiment.json file in it (it can also be accompanied by traces and
timeseries). This file contains description of threadpools and workloads: their types and
parameters.

Script file book/intro/experiment.json

{ "name": "jump_table",
 "steps": {
 "jt": {
 "num_steps": 100,
 "num_requests": 2000 }
 },
 "threadpools": {
 "tp_jt" : {
 "num_threads": 24,
 "quantum": 2000000000,
 "disp": { "type": "round-robin" } }
 },
 "workloads" : {
 "jt" : {
 "wltype": "jt",
 "threadpool": "tp_jt",
 "params": {
 "num_request_types": 5000,
 "request_type": {
 "randgen": { "class": "lcg" } },
 "is_incorrect": {
 "randgen": { "class": "lcg" },
 "pmap": [
 { "probability": 0.2, "value": true },
 { "probability": 0.8, "value": false }
] } },
 "rqsched": {
 "type": "iat",
 "distribution": "exponential"
 }

Introduction12

http://myaut.github.io/tsload/
https://github.com/myaut/tsload

 }
 }
}

For example, defines an experiment called jump_table. workloads section defines
workload jt which type is also jt. That workload have the following parameters:

• num_request_types - set globally for entire workload - number of "request types" that
will be generated;

• request_types - generated for each request with linear congruential PRNG;
• is_incorrect - boolean value which will be set to true for 20% requests.

It also defines request scheduler –- inter arrival time will be generated using exponential
distribution. steps section defines number of requests which will be generated for this
workload: 100 steps with 2000 requests in each.

threadpools section defines threadpools which will perform our workloads. It defines pool
tp_jt which contains 24 threads with step period set to 2 second (as paramter quantum sets
in nanoseconds). Threadpool dispatcher describes how requests will be distributed across
threads and it is set to round-robin.

If we try to draw a timing diagram of the requests generated by this configuration file we
will get something like .

jt workload type is defined in a separate loadable module which contains code for
simulating requests. During our book we meet similar modules in exercises: proc_starter
which forks processes, file_opener which randomly opens files and other modules.

Experiment is started with tseexperiment command:
tsexperiment -e /path/to/experiment run

In this command /path/to/experiment is a directory which contains file
experiment.json. That directory will also contain experiment results which can be listed
with list subcommand of tseexperiment:
tsexperiment -e /path/to/experiment list

Results may be exported to CSV format with export subcommand or some statistics may
be shown with report subcommand.

It is not necessary to edit configuration file each time parameter have to be altered: run
subcommand has -s option. To provide its argument, check flattened names of configuration
parameters with -l option of subcommand show:
tsexperiment -e /opt/tsload/var/tsload/mbench/jt show -l
name=jump_table
steps:jt:num_steps=100
steps:jt:num_requests=2000
...

13Introduction

Thread #1

Thread #2

Thread #24request_type =
 0x46B72F89DBAF20F
is_incorrect = false

#24

request_type =
 0x65F9CE5EF1973DF
is_incorrect = false

#2 request_type =
 0x97CAA3A9F27B80
is_incorrect = true

#26

request_type =
 0x1124385DC1576B5
is_incorrect = true

#1 request_type =
 0x76F3AB6CD219F84
is_incorrect = false

#25

...

Inter-arrival time
(distributed exponentially)

So, to change number of per-step requests to 500, you should call tsexperiment with
following options:
tsexperiment -e /opt/tsload/var/tsload/mbench/jt run \
 -s steps:jt:num_requests=500

In some cases we will need to use hardware device names in experiment configuration, i.e.
to bind threads to CPU cores. To get their names, run tshostinfo command:
tshostinfo -x

Operating System Kernel
Definition

According to Wikipedia, Operating System Kernel is

a computer program that manages I/O (input/output) requests from software, and translates them into data
processing instructions for the central processing unit and other electron components of a computer. The
kernel is a fundamental part of a modern computer's operating system.

We will refer to operating system kernel as kernel in the rest of the book. Applications are
using system call mechanism to access various kernel functions, and by doing that they
transfer control to kernel routines. The current state of application including all variables and
current program counter is called context. C is a programming language which is vastly used
for writing Unix-like operating systems kernels such as Solaris, FreeBSD and Linux. C
supports only procedural programming, but kernel developers adopted object-oriented and
even functional programming.

Where can we get information on kernel? Like I said, the most reliable source of such
information is source codes which contain comments. You can use cross-reference tools to
navigate source codes as easy as click a hyperlink. Some of them are publicly available: like
lxr.linux.no which contains Linux source and src.illumos.org which contains sources for
Illumos (FOSS fork of OpenSolaris) in project illumos-gate. You can create your own
cross-reference with OpenGrok tool: https://github.com/OpenGrok/OpenGrok.

Of course we have to mention textual sources of information. For Linux it is:

• Documentation/ directory in kernel sources
• Linux Kernel Mailing List
• Linux info from source
• Robert Love book "Linux Kernel Development"
• Linux Device Drivers Book

Some sources about Solaris:

• solaris.java.net –- remnants of old OpenSolaris site
• Richard McDougall and Jim Mauro book "Solaris(TM) Internals: Solaris 10 and

OpenSolaris Kernel Architecture"
• Oracle course "Solaris 10 Operating System Internals"

Warning

Solaris sources was closed after Oracle acquisition of Sun in 2009 and some information on Solaris may be
outdated.

Introduction14

http://en.wikipedia.org/wiki/Kernel_%28operating_system%29
http://lxr.linux.no/
http://src.illumos.org/
https://github.com/OpenGrok/OpenGrok
http://lkml.org/
http://lwn.net/
https://lwn.net/Kernel/LDD3/
http://solaris.java.net/

Module 1: Dynamic tracing tools.
dtrace and stap tools

Tracing
Operating system and application are crucial parts of a computer system, but due to their

colossal complexity, there are situations related to software bugs, incorrect system setup that
lead to incorrect behavior. To address these issues, system administrator should perform
instrumentation which depends on the issue arisen: it could be performance statistics
collection and their analysis, debug or system audit. Two common approaches to
instrumentation are sampling when you collect state of the system: values of some variables,
stacks of threads, etc. at unspecified moments of time and tracing when you install probes at
specified places of software. Profiling is a most famous example of sampling.

Sampling is very helpful when you do not know where issue happens, but it hardly help
when you try to know why it happened. I.e. profiling revealed that some function, say foo()
that processes lists of elements, consumes 80% of the time, but doesn't say why: whether
some lists are too long, or they should be pre-sorted, or list is inappropriate data structure for
foo(), or whatever. With tracing we can install a probe to that function, gather information
on lists (say their length) and collect cumulative execution of function foo(), and then
cross-reference them, searching for a pattern in lists whose processing costs too much CPU
time.

Over time operating system kernels have grown different methods of tracing. First one and
a simplest one is counters –- each time probe fires (say, major page fault), they increase
some counter. Counters may be read through kstat interface in Solaris:
kstat -p |grep maj_fault
 cpu:0:vm:maj_fault 7588

Linux usually provides counters through procfs or sysfs:
cat /proc/vmstat | grep pgmajfault
 pgmajfault 489268

This approach is limited: you can't add counter for every event without losing performance,
and they are usually system-wide (i.e. you can't know what process causing major-faults), or
process/thread-wide.

15Module 1: Dynamic tracing tools. dtrace and stap tools

More complex approach is debug printing: add a printk() or cmn_err() statement as a
probe, but this approach is quite limited, because you need recompile kernel each time you
need new set of probes. But if all debug printing will be enabled, you will get excessive
system load. By default, most of debug printing in Solaris are disabled unless you compile a
DEBUG-build, which is not publicly available. Modern Linux kernels however developed a
dynamic debugging facility available via pr_debug(). There are several static probes which
are deactivated on systems start, but can be activated externally: ftrace and kprobes in Linux
and TNF on Solaris, but amount of information provided by them is still limited, and
ftrace/kprobes are requiring writing kernel modules which is not convenient and dangerous.

So, generally speaking, that approaches provide very limited set of data at very limited set
of tracing points. The only approach that widens that limits is kernel debugger, but because
each breakpoint halts system, it cannot be used on production systems. The answer to them
are dynamic tracing which is the topic of this book.

Dynamic tracing
Unlike other approaches, dynamic tracing tool embeds tracing code into working user

program or kernel, without need of recompilation or reboot. Since any processor instruction
may be patched, it can virtually access any information you need at any place.

Solaris DTrace development was begun in 1999, and it became part of Solaris 10 release.
Along with other revolutionary Solaris 10 features, it shaken world of operating systems, and
still evolve. You may found more information about DTrace history here: Happy 5th
Birthday, DTrace!.

Here are some DTrace information sources:

• Oracle Wiki
• DTrace at SolarisInternals wiki
• «Solaris Performance and Tools» book
• «DTrace - Dynamic Tracing in Oracle Solaris, Mac OS X and FreeBSD» book
• Solaris Dynamic Tracing Guide

During course we will refer to Solaris Dynamic Tracing Guide with the following sign:

DTrace was open-sourced as a part of OpenSolaris, but due to license incompatibility, it
can't be merged with Linux Kernel. Several ports existed, but they lacked of proper support.
The only stable port is provided in Unbreakable Enterprise Kernel by Oracle for their own
Linux distribution which is not wide-spread. There were attempt to develop another clone of
DTrace –- DProbes, but it was a failure. Over time three major Linux players: Red Hat,
Hitachi, IBM presented dynamic tracing system for Linux called SystemTap. It has two
primary sources of information: SystemTap Language Reference to which we will reference
with icon SystemTap Tapset Reference Manual to which we will reference with icon .
Of course, there is a Unix manual pages, to which we will refer with icon .

SystemTap has to generate native module for each script it runs, which is huge performance
penalty, so as alternative to it, Ktap is developing. Its language syntax shares some features
with SystemTap, but it uses Lua and LuaJIT internally which makes it faster than SystemTap.
Modern kernel versions has eBPF integrated, and there is experiment on using it as a platform
for generating probe code, but it is far from final stage as of kernel version 4.1. Finally, there
is a sysdig which is scriptless. Another implementation of Linux tracing is LTTng. It had
used static tracing and required kernel recompilation until version 2.0, but currently utilizes
ftrace and kprobe subsystems in Linux kernel. As name of the book states, it describes

Module 1: Dynamic tracing tools. dtrace and stap tools16

https://blogs.oracle.com/bmc/entry/happy_5th_birthday_dtrace
https://blogs.oracle.com/bmc/entry/happy_5th_birthday_dtrace
https://wikis.oracle.com/display/DTrace/DTrace
http://www.solarisinternals.com/wiki/index.php/DTrace_Topics
http://download.oracle.com/docs/cd/E19253-01/817-6223/
http://sourceware.org/systemtap/
http://sourceware.org/systemtap/langref/
http://sourceware.org/systemtap/tapsets/
https://github.com/ktap/ktap
http://www.sysdig.org/
http://lttng.org/

SystemTap and DTrace.

Here are the workflow of dynamic tracing systems:

Dynamic tracing system logic is quite simple: you create a script in C-like language which
is translated to a probe code by a compiler. DTrace scripts are written in D (do not
disambiguate with D language from digital mars) have extension .d, while SystemTap scripts
have extension .stp and written in SystemTap Language (it doesn't have special name).
That probe code is loaded into kernel address space by a kernel module and patches current
binary code of kernel. Probes are writing collected data to intermediate buffers that are
usually lock-free, so they have small effect on kernels performance and doesn't need to
switch context to a tracing program. Separate entity called consumer reads that buffers and
writes gathered data into terminal, pipe or to a file.

DTrace
DTrace is shipped with Solaris from version 10, no additional actions needed to install it. It

also doesn't need any changes to kernel code: it relies on CTF sections, symbol tables and
static tracing points that are included into Solaris Kernel binaries.

The heart of DTrace is libdtrace.so.1 library which contains compiler that translates
script in D language to a DTrace Intermediate Format (DIF). That format is machine codes
of simplified RISC which are interpreted by drv/dtrace driver:

17Module 1: Dynamic tracing tools. dtrace and stap tools

.d

Konsole
=> check_preempt_wakeup:
 se: curr tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-978205 vruntime: MIN+0
 se: se tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+41023325 vruntime: MIN+-6000000
 CFS_RQ: /
 nr_running: 2 load.weight: 2048 min_vruntime: 314380161884
 runnable_load_avg: 1067 blocked_load_avg: 0
 se: first tsexperiment/6063 SCHED_NORMAL
 se: rb: tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+41023325 vruntime: MIN+-6000000
<= check_preempt_wakeup

=> task_tick_fair J=4302675615 queued: 0
 sched_slice: 6000000
 se: curr tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-260001 vruntime: MIN+260001
 delta_exec: 42261531 delta: 6260001
<= task_tick_fair

Compiler

Consumer

Front-end tool

Buffers

Probes

KernelUserspace

svc routines
disassembler
module cache

CTF symtab

assembler

parser
lexer

codegen

module

CTF symtab

drv/dtrace

DIF engine

libdtrace.so.1

Kernel

Userspace

dtrace (1M)

DIF

DTrace primary front-end tool is dtrace(1M) which act both as compiler and consumer
and uses libdtrace.so.1 facilities to do that. There are other front-ends: trapstat(1M)
and lockstat(1M), but libdtrace.so.1 APIs are open, so you can create your own front
end for that (i.e. for Java using JNI). We will refer to dtrace(1M) as DTrace further in a
book.

DTrace tool

DTrace supports three launch modes:

• Script is passed as command line argument: # dtrace -n 'syscall::write:entry {
trace(arg0); }'

• Script is located in separate file: # dtrace -s syscalls.d [arguments] In that case
you may pass arguments, for example user ID for traced processes or disk name for which
you trace block input-output. In this case arguments will be accesible in variables $1, $2, ...
$n. Note that because there is no special handling for string arguments, you may need
duplicate quotes (double-quotes needed by DTrace): # dtrace -s syscalls.d
'"mysqld"'

• Explicitly passing name of probe: dtrace [-P provider] [-m module] [-f
function] [-n name]

Here are some useful command line options:

• -l –- lists all available probes. Can be filtered using options -P, -m, -f or -n or using
grep. I.e.:
dtrace -l -P io
ID PROVIDER MODULE FUNCTION NAME
800 io genunix biodone done
801 io genunix biowait wait-done
802 io genunix biowait wait-start

• -q –- enables quiet mode. By default DTrace prints probe id, its name and CPU number
when probe fires. -q disables that.

• -w –- allows destructive actions, for example system panics or breakpointing
applications. That actions may be forbidden globally by setting kernel tunable
dtrace_destructive_disallow.

• -o FILE –- redirects output to a file. If file already exists, it appends to it.
• -x OPTION[=VALUE] –- sets one of DTrace tunables. Here are some useful tunables:

• bufsize –- size of consumer buffer (same as -b). Note that consumer buffers are
per-cpu.

• cpu –- processor on which tracing is enabled (same as -c)
• dynvarsize –- size of buffers for dynamic variables (associative arrays in particular)
• quiet –- quiet mode (same as -q)
• flowindent –- print probes in tree mode with indentation. See more in Dynamic code

analysis.
• destructive –- enables destructive mode (same as -w). These options may be set

inside script using pragma directive: #pragma D option bufsize=64m
• -C –- call C preprocessor cpp(1) before script compilation. That allows handling C

preprocessor directives such as #include, #define, #ifdef and so on. There are some extra
preprocessor-related options:

Module 1: Dynamic tracing tools. dtrace and stap tools18

• -D MACRO[=SUBSTITUTION] –- defines preprocessor macro. -U undefines it.
• -I PATH –- adds a path to include files
• -H –- prints included files

• -A and -a –- enable anonymous tracing which is used to trace system's boot and allows
early loading of drv/dtrace

• -c COMMAND and -p PID –- attaches tracing to a running command or starts new one

DTrace example

Let's create script test.d with following contents:
#!/usr/sbin/dtrace -qs
#pragma D option flowindent
#pragma D option dynvarsize=64m

syscall::write:entry
/pid == $target/
{
 printf("Written %d bytes\n", arg2);
}

Launch it with following options:
root@host# chmod +x /root/test.d
root@host# /root/test.d -c "dd if=/dev/zero of=/dev/null count=1"

Q: One by one, remove options flowindent and -q from script. What changed?

Q: Calculate number of probes that are provided by fbt provider: # dtrace -l -P fbg
| wc -l

References

• dtrace(1M)
• dtrace(1M) Utility
• Options and Tunables

SystemTap
SystemTap is not part of Linux Kernel, so it have to adapt to kernel changes: i.e. sometimes

runtime and code-generator have to adapt to new kernel releases. Also, Linux kernels in most
distributions are stripped which means that debug information in DWARF format or symbol
tables are removed. SystemTap supports DWARF-less tracing, but it has very limited
capabilities, so we need to provide DWARF information to it.

Many distributions have separate packages with debug information: packages with
-debuginfo suffix on RPM-based distributions, packages with -dbg on Debian-based
distributions. They have files that originate from same build the binary came from (it is
crucial for SystemTap because it verifies buildid of kernel), but instead of text and data
sections they contain debug sections. For example, RHEL need kernel-devel,
kernel-debuginfo and kernel-debuginfo-common packages to make SystemTap
working. Recent SystemTap versions have stap-prep tool that automatically install kernel
debuginfo from appropriate repositories with correct versions.

For vanilla kernels you will need to configure CONFIG_DEBUG_INFO option so debug
information will be linked with kernel. You will also need to set CONFIG_KPROBES to allow

19Module 1: Dynamic tracing tools. dtrace and stap tools

http://docs.oracle.com/cd/E26502_01/html/E29031/dtrace-1m.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-dtrace1m/index.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-opt/index.html

SystemTap patching kernel code, CONFIG_RELAY and CONFIG_DEBUG_FS to allow transfer
information between buffers and consumer and CONFIG_MODULES with
CONFIG_MODULE_UNLOAD to provide module facilities. You will also need uncompressed
vmlinux file and kernel sources located in /lib/modules/$(uname -r)/build/.

SystemTap doesn't have VM in-kernel (unlike DTrace and KTap), instead it generates
kernel module source written in C than builds it, so you will also need a compiler toolchain
(make, gcc and ld). Compilation takes five phases: parse, elaborate in which tapsets and
debuginfo is linked with script, translate in which C code is generated, compile and run:

SystemTap uses two sets of libraries during compilation process to provide kernel-version
independent API for accessing. Tapsets are a helpers that are written in SystemTap language
(but some parts may be written in C) and they are plugged during elaborate stage. Runtime is
written in C and used during compile stage. Because of high complexity of preparing source
code and compiling that, SystemTap is slower than a DTrace. To mitigate that issue, it can
cache compiled modules, or even use compile servers.

Unlike DTrace, SystemTap has several front-end tools with different capabilities:

• stapio is a consumer which runs module and prints information from its buffer to a file
or stdout. It is never used directly, but called by stap and staprun tools.

• stap(1) includes all five stages and allow to stop at any of them. I.e. combining options
-k and -p 4 allow you to create pre-compiled .ko kernel module. Note that SystemTap is
very strict about version of kernel it was compiled for.

• staprun(1) allows you to reuse precompiled module, instead of start compilation from
scratch.

Warning

If stap parent is exited, than killall -9 stap won't finish stapio daemon. You have to signal it with
SIGTERM: killall -15 stap

Module 1: Dynamic tracing tools. dtrace and stap tools20

.stp

parse

elaborate

translate

compile

run

.stp.stp.stp.stp.stp.stptapsets

.stp.stp.stp.stp.stp.cruntime

.stp.stp.kodebuginfo

vmlinux

.c

M
akefile

.ko

stap

Like many other scripting tools, SystemTap accepts script as command line option or
external file, for example:

• Command-line script is passed with -e option # stap -e 'probe syscall.write {
printf("%dn", $fd); }' [arguments]

• External file as first argument: # stap syscalls. [arguments] SystemTap command
line arguments may be passed to a script, but it distingushes their types: numerical arguments
are accessible with $ prefix: $1, $2 ... $n while string arguments have @ prefix: @1, @2 ...
@n

Here are some useful stap(1) options:

• -l PROBESPEC accepts probe specifier without probe keyword (but with wildcards) and
prints all matching probe names (more on wildcards in Probes). -L will also print probe
arguments and their types. For example: # stap -l 'scsi.*'

• -v –- increases verbosity of SystemTap. The more letters you passed, the more
diagnostic information will be printed. If only one -v was passed, stap will report only
finishing of each stage.

• -p STAGE –- ends stap process after STAGE, represented with a number starting with 1
(parse).

• -k –- stap tool won't delete SystemTap temporary files created during compilation
(sources and kernel modules kept in /tmp/stapXXXX directory),

• -g –- enables Guru-mode, that allows to bind to blacklisted probes and write into kernel
memory along with using Embedded C in your scripts. Generally speaking, it allows
dangerous actions.

• -c COMMAND and -x PID –- like those in DTrace, they allow to bind SystemTap to a
specific process

• -o FILE –- redirects output to a file. If it already exists, SystemTap rewrites it.
• -m NAME –- when compiling a module, give it meaningful name instead of stap_.

When SystemTap needs to resolve address into a symbol (for example, instruction pointer
to a corresponding function name), it doesn't look into libraries or kernel modules. Here are
some useful command-line options that enable that:

• -d MODULEPATH –- enables symbol resolving for a specific library or kernel module.
Note that in case it is not provided, stap will print a warning with corresponding -d option.

• --ldd –- for tracing process –- use ldd to add all linked libraries for a resolving.
• --all-modules –- enable resolving for all kernel modules

SystemTap example

Here is sample SystemTap script:
#!/usr/sbin/stap

probe syscall.write
{
 if(pid() == target())
 printf("Written %d bytes", $count);
}

Save it to test.stp and run like this:
root@host# stap /root/test.stp -c "dd if=/dev/zero of=/dev/null count=1"

21Module 1: Dynamic tracing tools. dtrace and stap tools

Q: Run SystemTap with following options: # stap -vv -k -p4 /root/test.stp , find
generated directory in /tmp and look into created C source.

Q: Calculate number of probes in a syscall provider and number of variables provided by
syscall.write probe:
stap -l 'syscall.*' | wc -l
stap -L 'syscall.write'

References

• STAP
• STAPRUN
• The stap command
• Literals passed in from the stap command line

Safety and errors
Like we said, dynamic tracing is intended to be safely used in production systems, but since

it is intrusive to an OS kernel, there is a room for unsafe actions:

• Fatal actions inside kernel like reading from invalid pointer (like NULL) or division by
zero will cause a panic following by a reboot.

• If probes are executed for too much time (or too often), it will induce performance
degradation in a production system, or at least give results that are very different than from a
non-traced system (i.e. making racing condition that you debug a very rare).

• Dynamic tracing systems allocate memory for their internal memory which should be
limited.

That leads to a common principle for all dynamic tracing systems: add some checks before
executing actual tracing. For example, DTrace has Deadman Mechanism that detects
system unresponsiveness induced by DTrace and aborts tracing, while SystemTap monitors
time spent in each tracing probe. The common error messages you'll see due to that are
processing aborted: Abort due to systemic unresponsiveness in DTrace and
SystemTap probe overhead exceeded threshold.

Unfortunately, SystemTap is not that affective as DTrace, so probe overhead error message
is a common thing. To overcome this error in SystemTap you can recompile your script with
-t option to see what probes are causing overload and try to optimize them. You may also
increase threshold by setting compile macro (with -D option) STP_OVERLOAD_THRESHOLD in
percent of overall CPU time or completely disable it with STP_NO_OVERLOAD macro (latest
SystemTap versions support it via -g --suppress-time-limits).

Another resource that is limited is memory. Memory limitations are implemented pretty
simple: all allocations should be performed when script is launched and with a fixed size. For
associative arrays, SystemTap limits number of entries it can hold (changeable by setting
macro MAXMAPENTRIES), and ERROR: Array overflow, check MAXMAPENTRIES near
identifier 't' at :1:30, while DTrace limits overall space for them via dynvarsize
tunable and it will print it as dynamic variable drops error. Note that SystemTap still can
exhaust memory if you create too many associative arrays, but this will be handled by OOM
which will simply kill stap tool. Both DTrace and SystemTap limit size of strings used in
scripts.

Transport buffer between probes and consumer is also limited, so if you will print in probes
faster than consumer can take, you will see There were NN transport failures error in

Module 1: Dynamic tracing tools. dtrace and stap tools22

https://sourceware.org/systemtap/man/stap.1.html
https://sourceware.org/systemtap/man/staprun.8.html
https://sourceware.org/systemtap/langref/SystemTap_overview.html#SECTION00025000000000000000
https://sourceware.org/systemtap/langref/Language_elements.html#SECTION00067000000000000000

SystemTap or DTrace drops on CPU X error on DTrace. The answer to that problem is
simple: be less verbose, take data from buffer more frequently (regulated by cleanrate
tunable in DTrace) or increase buffer size (-b option and bufsize tunable in DTrace and
-s option in SystemTap).

Both DTrace and SystemTap are also using special handlers for in-kernel pagefaults, that
will disable panic and handle fault if it was caused by tracing. For example DTrace will
complain with error on enabled probe ID 1 (ID 78: syscall::read:entry):
invalid alignment (0x197) in action #1 at DIF offset 24 and continue execution,
while SystemTap will print ERROR: read fault [man error::fault] at
0x00000000000024a8 (addr) near operator '@cast' at :1:45 and stop tracing. Note
that SystemTap provides more context than DTrace. That is because error-checking is
performed in generated C code, not by RISC-VM inside driver.

Demonstration scripts

These scripts have errors which cause error messages described above. For associative
arrays we will use timestamp to flood array with unrepeated data:
dtrace -n 'int t[int];
 tick-1ms {
 t[timestamp] = timestamp }'
stap -e 'global t;
 probe timer.ms(1) {
 t[local_clock_ns()] = local_clock_ns(); }'

To demonstrate segmentation violation, you can interpret wrong integral argument (fd for
Solaris and file position in Linux) as pointer to a thread structure and try to access its field.
dtrace -n 'syscall::read:entry {
 trace(((kthread_t*) arg0)->t_procp); }' -c 'cat /etc/passwd'
stap -e 'probe kernel.function("vfs_read") {
 println(@cast($count, "task_struct")->pid); }' -c "cat /etc/passwd"

References

• Safety and security
• Performance Considerations
• SystemTap Wiki: Exhausted resources

Stability
Another problem to which dynamic tracing systems face is stability of in-kernel interfaces.

While system calls never change their interface due to backwards compatibility (if something
need to be changed, new system call is introduced†), internal kernel function often do that
especially if they not a public API for a drivers. Dynamic tracing languages provide
mechanisms to avoid direct use of in-kernel interface by hiding them in abstractions:

Stability Data access

DTrace SystemTap

High translators, i.e. fileinfo_t tapset variables

Lowest Global variables and raw
arguments like args[0] or
(struct_t*) arg0

Raw arguments like $task or
@cast($task, "task_struct")

23Module 1: Dynamic tracing tools. dtrace and stap tools

https://sourceware.org/systemtap/langref/SystemTap_overview.html#SECTION00026000000000000000
http://docs.oracle.com/cd/E19253-01/817-6223/chp-perf/index.html
http://sourceware.org/systemtap/wiki/TipExhaustedResourceErrors

Stability Tracepoints

DTrace SystemTap

High statically defined tracing
providers (like io and many
others)

tapset aliases, i.e. vm.kfree

Mediocre static tracepoints with sdt
provider

statically defined ftrace probes like
kernel.trace("kfree")

Lowest fbt and pid$$ providers DWARF probes like
kernel.function("kfree")

To achieve maximum script portability, you should pick highest stability options wherever
possible. Downside of that approach is that it provides fewer information than you could
access with other approaches. These options will be described in Translators and tapsets
section of next module.

Linux kernel is changing faster: it has stable releases each 2-3 months, and moreover, its
builds are configurable, so some features present in one kernel may be disabled in another
and vice versa which makes stability is much more fragile. To overcome that, SystemTap
Language has conditional compilation statements which like in C allow to disable certain
paths in code. Simplest conditional compilation statements are @defined which evaluates to
true if variable passed to it is present in debug information and @choose_defined which
chooses from several variables. It also support ternary conditional expression:
%(kernel_v >= "2.6.30"
 %? count = kernel_long($cnt)
 %: count = $cnt
 %)

Here, kernel_v is numerical version of kernel without suffix (for version with suffix, use
kernel_vr). SystemTap also defines arch variable and CONFIG_* tokens similiar to
configuration options. These options are not available in Embedded C, use traditional
preprocessor there.

Finally, if some probe is missing from kernel, script compilation will fail. DTrace allow to
ignore such errors by passing -Z command line option. In SystemTap you may add ? at the
end of probe name to make this probe optional.

Notes

† –- unless you are running Solaris 11 which was deprecated and obsoleted many of its
system calls..

References

• Conditional compilation
• Stability

Module 1: Dynamic tracing tools. dtrace and stap tools24

https://sourceware.org/systemtap/langref/Language_elements.html#SECTION00068000000000000000
http://docs.oracle.com/cd/E19253-01/817-6223/chp-stab/index.html

Module 2: Dynamic tracing
languages

Introduction
Both DTrace and SystemTap languages have C-like syntax for dynamic tracing scripts.

Every script is a set of probes, and each of them binds to a certain event in kernel or
application, for example dispatching of a process, parsing SQL query, etc. Each probe may
have a predicate which acts as a filter of unnecessary probes, i.e. if you want to trace specific
process or specific kind of query.

Each script consists of global variables declarations followed by probes, and possibly
function declarations. In SystemTap each declaration is preceded by global, function or
probe keyword:
global counter;
function inc_counter() {
 ++counter;
}
probe timer.s(1) {
 inc_counter();
 println(counter);
}

Note

Trailing semicolons may be omitted in SystemTap Language, but we will use them in our demonstration scripts
to improve readability.

Same works for DTrace, but the syntax of definitions is different:
int xcounter;
tick-1s {
 ++xcounter;
 trace(xcounter);
}

DTrace language is limited due to safety reasons, so it doesn't support loops and conditional
statements. Conditional branch in DTrace may be emulated using predicates, and also a
limited support of ternary operator ?: is available. SystemTap, on the other hand, supports
wider subset of C language: it has for, while, if/else, foreach statements, and

25Module 2: Dynamic tracing languages

break/continue for controlling loop behavior.

SystemTap supports declaration of functions:
function dentry_name:string(dentry:long) {
 len = @cast(dentry, "dentry")->d_name->len;
 return kernel_string_n(@cast(dentry, "dentry")->d_name->name, len);
}

In this example, function dentry_name() accepts dentry argument of type long (in this
case, long is equivalent to a missing pointer type) and returns a string. It converts received
pointer to a type struct dentry, extracts string from it and returns it.

DTrace doesn't have a functions, but you may use C macro in simple cases:
#define CLOCK_TO_MS(clk) (clk) * (`nsec_per_tick / 1000000)

SystemTap language supports try/catch statement to handle tracing errors which were
described in Safety and errors section:
try {
 /* Errorneous expression: read integer on address 4 */
 println(kernel_int(4));
}
catch(msg) {
 /* Ignore errors or print message `msg` */
}

There is a hackish way of building loops in DTrace using timer probes:
int i;
BEGIN {
 i = 10;
}
tick-1ms
/--i >= 0/ {
 printf("Hello, world!\n");
}

This script prints "Hello, world" phrase 10 times. Note that there is a delay of 1 millisecond
between loop cycles, but it won't be noticed due to larger buffer switching intervals.

Finally, SystemTap have Embedded C extension (enabled only in Guru-Mode or in tapsets),
which allow to write raw C code compiled directly to module's code without passing first
three stages of translation:
function task_valid_file_handle:long (task:long, fd:long) %{ /* pure */
 [...]

 rcu_read_lock();
 if ((files = kread(->files))) {
 filp = fcheck_files(files, STAP_ARG_fd);
 STAP_RETVALUE = !!filp;
 }

 CATCH_DEREF_FAULT();
 rcu_read_unlock();
%}

This example is taken from pfiles.stp sample. It has to grab RCU lock to access file pointer
safely, which is done by direct call to rcu_read_lock() and rcu_read_unlock()
functions. Note that to access arguments and return value it has to use names prefixed with
STAP (in early versions of SystemTap there were magic pointers THIS and CONTEXT for this).

Module 2: Dynamic tracing languages26

To read pointer safely it uses kread() function.

Embedded C part starts with %{ and ends with %} and may be used as function body, and
in global scope if you need extra includes.

Probes
Definition

Probe –- is a handler of kernel or application event. When probe is installed into kernel or application, so it can
handle such event, we will call it attaching a probe or binding a probe. When event occurs and probe code is
executing, we will say probe is firing.

For example, let's see how synchronous writing to a disk is performed in Linux and what
can be traced:

When process wants to start synchronous write, it issues write() system call and by doing
that it transfers control to a kernel code, to a sys_write() function in particular. This
function eventually calls a submit_bio() function which pushes data from user process to a
queue of corresponding disk device. If we attach probes to these functions, we can gather the
following information:

• Process and thread which started input/output which is accessible via global current
pointer.

• File descriptor number which is passed as first argument of sys_write and called fd.
• Disk I/O parameters such as size and requested sector from bio structure.

To satisfy this requirements, tracing languages provide mechanisms of defining probes.
Definition of SystemTap probe begins with probe keyword followed by probe name and
body of probe handler. Name is a dotted-symbol sequence, where each symbol may have
optional parameters in braces. SystemTap supports wildcards in probe names or several probe
names in probe clause if you need to use same handler for multiple probes. For example:
probe kernel.function("vfs_*") {
 // Actions
}

probe timer.ms(100) {
 // Actions
}

probe scheduler.cpu_on {
 // Actions

27Module 2: Dynamic tracing languages

sys_write(fd, ...)

submit_bio(..., bio*, ...)

Probe

Code

task_struct* current

}

Probe names in DTrace are four identifiers separated by colons:
Provider:Module:Function:Name[-Parameter].

• Provider is a hint to DTrace on how to attach a probe. Different providers usually have
different mechanisms of attachment.

• Function and Module are relate to a code location where probe will be installed.
• Name and optional parameters provide meaningful names to a event which will be

handled in a probe. For example:
fbt::fop_*:entry {
 // Actions
}

profile-100ms {
 // Actions
}

sched:::on-cpu {
 // Actions
}

DTrace support wildcards, and some parts of probe name may be omitted: fbt:*:*:entry,
fbt:::entry are equivalent, while fop_read:entry is shorter form of
fbt:genunix:fop_read:entry.

Probe names may be combined using comma, and have multiple probes attached to same
event, for example in SystemTap:
probe syscall.read {
 /* Preparations */ }
probe syscall.read, syscall.write {
 /* Common actions for read and write */ }

Or in DTrace:
syscall::read:entry {
 /* Preparations */ }
syscall::read:entry, syscall::write:entry {
 /* Common actions for read and write */ }

First probe body going in script executes first.

If DTrace or SystemTap fail to find a probe, it will abort script translation. To overcome
that, use -Z option can be supplied to dtrace or question mark has to be added to a probe
name in SystemTap:
probe kernel.function("unknown_function") ?

Function boundary tracing

Function boundary tracing is the largest and most generic class of tracing. Function
boundary probes attach to entry point or exit (hence bounds) from a function. Since most
functions begin with saving stack and end with retq or similar instruction, tracer simply
patches that instruction, by simply replacing it to interrupt or call (depending on a platform).
That interrupt is intercepted by probe code which after execution returns control to function,
like in submit_bio case described above. Here are similar example for Solaris and DTrace:
bdev_strategy: pushq %rbp → int $0x3
bdev_strategy+1: movq %rsp,%rbp movq %rsp,%rbp

Module 2: Dynamic tracing languages28

bdev_strategy+4: subq $0x10,%rsp subq $0x10,%rsp

Warning

Userspace probes will be covered in Module 5.

SystemTap

SystemTap function probe names have the following syntax:
{kernel|module("module-pattern")}.function("function-pattern")[.{call|return|inline}]

where kernel means that function is statically linked into vmlinux binary, while module
followed by its name pattern seeks inside module. module-pattern is usually a name of a
kernel module, but may contain wildcards such as *, ?, and character class [].
function-pattern is a bit more complex: along with direct specifying its name, or using
wildcards, it also support at-suffix followed by a source file name and optional source line
number:
function-name[@source-path[{:line-number|:first-line-last-line|+relative-line-number}]]

Wildcards can be used in source-path.

Function probe name ends with suffix defining a point in function where probe should be
attached:

• .call is used to attach entry point non-inlined function, while .inline is used to attach
first instruction of inlined function;

• .return is used for return points of non-inlined functions;
• empty suffix is treated as combination of .call and .inline suffixes.

Along with attaching to any line through relative-line-number syntax, SystemTap allows to
patch any kernel instruction:
kernel.statement(function-pattern)
kernel.statement(address).absolute
module(module-pattern).statement(function-pattern)

Note

When we will use following syntax for probe names:

• {x|y|z} –- one of the options
• [optional] –- optional part of name which can be omitted
• parameter –- changeable parameter which can have different values described below

Another option is DWARF-less probing which uses kprobes if debug information is not
available:
kprobe[.module("module-pattern")].function(function-pattern)[.return]
kprobe.statement(address).absolute

DTrace

DTrace function tracing is much simpler: it is supported by fbt provider which has only
two probe names: entry for entry point and return for exit from function. For example:
fbt:e1000g:e1000g_*:entry

29Module 2: Dynamic tracing languages

System call tracing

A simplest variant of function boundary tracing is a system call tracing. In SystemTap they
are implemented as aliases on top of corresponding functions and accessible in syscall tapset:
syscall.system-call-name[.return]

DTrace uses different mechanisms for attaching to a system calls: it is implemented
through driver systrace and patches system call entry point in a sysent table. A syntax for
probes, however, is similar to fbt:
syscall::system-call-name:{entry|return}

Note that if you omit provider name, some probes will match both function and system
calls, so probe will fire twice.

Statically defined tracing

Sometimes is function boundary tracing is not enough: an event may occur inside function,
or may be spread through different functions. In DTrace and Solaris, for example, there are
two implementations of scheduler functions that are responsible for stealing task from cpu:
older disp_getbest and newer and available in newer versions of Solaris: disp_getkpq.
But they both provide steal probe that fires when dispatcher moves a thread to idle CPU:
sdt:::steal or simply steal. You can still distinguish these probes by explicitly setting
function name: sdt::disp_getbest:steal.

Another use-case for statically defined probes is long functions that contain multiple steps,
like handling TCP flags and advancing FSM of TCP-connection or handling multiple
requests at once. For example, Solaris handles task queues like this:
static void taskq_thread(void *arg)
{
 /*...*/

 for (;;) {
 /*...*/
 tqe->tqent_func(tqe->tqent_arg);
 /*...*/
 }
}

It is impossible to attach probe to a tqent_func because it is dynamically set, but Solaris
provides taskq-exec-start and taskq-exec-end probes which are set around
tqent_func call.

Probes may be added to kernel using DTRACE_PROBEn macros, i.e.:
DTRACE_PROBE3(steal, kthread_t *, tp, cpu_t *, tcp, cpu_t *, cp);

Statically defined probes are extremely useful in DTrace because it doesn't provide access
to local variables or tracing any instruction of kernel.

In Linux statically defined tracing were added in version 2.6.24, as kernel markers, but it is
deprecated now and replaced by FTrace subsystem. SystemTap supports both:
kernel.trace("tracepoint-pattern")
kernel.mark("mark")[.format("format")]

Events provided by FTrace tracepoints are defined using TRACE_EVENT macro and later
used by calling trace_ function. For example:

Module 2: Dynamic tracing languages30

TRACE_EVENT(sched_switch,
 [...]

[...]
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
 struct task_struct *next)
{
 trace_sched_switch(prev, next);
 [...]

In ideal case, statically defined probe is just a nop instruction or a sequence of them. In
Linux, however it involves multiple instructions.

Alias probes

Function boundary probes lack of stability, so dynamic tracing provide intermediate layer
that we will refer as alias probe. Alias probe is defined in kernel as statically defined probe,
like Solaris does, or provided by tapset in SystemTap and converts and extract data from its
arguments using variables in SystemTap or translators in DTrace. Creating aliases will be
covered by Translators and tapsets topic.

Timers and service probes

These probes are not related to a kernel events, but to execution of tracing script itself. They
may trace starting of script, end of it and occured error, thus handle initialization of global
variables and printing results on end of script execution. Another kind of service probe is
timer probe, which is called every ∆T time on one or all system CPUs. Timers are useful for
creating stat-like utilities which print data every second or for profiling.

Take for example profiler probe which records task name from current pointer (it always
points to task executing on CPU now):

So if we count that timer probe has fired two times, once in context of left process and once
in context of right process, we can conclude that they both consume 50% of CPU time, like
prstat and top utilities do. Profiling will be covered in Profiling section of Module 3.

In SystemTap service probes have following syntax:

31Module 2: Dynamic tracing languages

Probe

∆T

task_struct* current

Probe

context
switch

{begin|end}[(priority)]
error

Where priority is a number which defines an order of executing begin and end statements.
Explicit order is needed because begin and end probes may be specified by tapsets.

Timers are specified in a following form:
timer.unit(period)[.randomize(deviation)]

Timer probes are executed on single CPU which id is undefined. randomize allows to make
period a uniform distributed random value.

For profiling use timer.profile probe which fires on all CPUs and attaches to system
timer. You may also use perf-probes for profiling.

DTrace has BEGIN and END probes in dtrace providers. Timers are handled by profile
provider which provide two types of probes: tick which fires on any CPU once at a time
period, and profile which does the same for all CPUs. Probe name is followed by a
parameter with number and unit:
[profile:::]{tick|profile}-period[unit]

For example tick-1s will fire every second. Note that, not all platforms may provide
nanosecond or microsecond resolution, so probe will fire rarely when it should be. Timer
probes with period above 1 millisecond are usually safe to use.

SystemTap and DTrace support the following timer units:

Unit

ns nsec nanoseconds

us usec microseconds

ms msec milliseconds

s sec seconds

m min minutes (DTrace)

h hour hours (DTrace)

d day days (DTrace)

hz

jiffies

Example

Lets take following C code as an example (assuming it is located in kernel-space) and see
how its lines may be probed:
1 float tri_area(float a, float b,
2 float angle) {
3 float height;
4
5 if(a = 180.0 || angle or
 trace_triangle_height(h);
12
13 return a * height;
14 }

Lineno DTrace SystemTap

1 fbt::tri_area:entry kernel.tri_area("tri_area").call

Module 2: Dynamic tracing languages32

Lineno DTrace SystemTap

7 fbt::tri_area:return kernel.tri_area("tri_area").return
kernel.statement("tri_area+6")

9 kernel.statement("tri_area+8")

11 sdt::tri_area:triangle-height kernel.trace("triangle_height")

13 fbt::tri_area:return kernel.tri_area("tri_area").return
kernel.statement("tri_area+12")

References

DTrace

• D Program Structure
• fbt Provider
• sdt Provider
• profile Provider

SystemTap

• STAPPROBES
• Probe points

Arguments
When you bind a probe, you need to collect some data in it. In C, data is usually passed as

arguments to a function, or returned as return value. So, when you bind a function boundary
tracing probe, you may need to gather them. Argument extraction relies on calling
conventions, and extracts data directly from registers or stack.

For example, let's look at Solaris kernel function from ZFS: void spa_sync(spa_t
*spa, uint64_t txg);. First argument is ZFS representation of a pool, second is 64-bit
unsigned integer which is transaction group number. So when we bind a probe to a
spa_sync, we can print both of them:
dtrace -qn '
 ::spa_sync:entry {
 printf("synced txg=%d [%s]\n",
 args[1], args[0]->spa_name); }'

DTrace supports two forms of arguments: arg0, arg1 ... argN are uint64_t values, while
args[0], args[1] ... args[N] have actual types if DTrace is able to extract them (i.e.
DTrace forbids type hinting for unstable probes). If args[N] is unavailable, you can still
treat argN as pointer and covert it as you want:
dtrace -qn '
 ::spa_sync:entry {
 printf("synced txg=%ld [%s]\n",
 (long) arg1, ((spa_t*) arg0)->spa_name); }'

DTrace supplies two arguments for return probes: arg0 is an instruction pointer to a caller,
and arg1 or args[1] is a return value.

DWARF format used in Linux is richer than CTF from Solaris and saves not only argument
types, but their names too. They are provided in SystemTap in separate namespace beginning

33Module 2: Dynamic tracing languages

http://docs.oracle.com/cd/E19253-01/817-6223/chp-prog/index.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-fbt/index.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-sdt/index.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-profile/index.html
https://sourceware.org/systemtap/man/stapprobes.3stap.html
https://sourceware.org/systemtap/langref/Probe_points.html

with $ and followed by name of argument. It provides access to locals as well as arguments.
However, some of them may be unavailable at the probe, because they are overwritten by
other data (which is called optimized out). For example, let's look at vfs_read function from
Linux kernel:
ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t →
 *pos) {
 ssize_t ret;

 [...]

 return ret;
}

Unfortunately, variable ret is inaccessible at the return probe, but you can still get it from
%rax register on x86_64 which is used for saving return values. SystemTap supplies return
values in $return variable:
stap -e '
 probe kernel.function("vfs_read").return {
 printf("VARS:%s\nreturn: %d\n", $$vars, $return);
 exit(); }'
VARS: file=0xcfa79580 buf=0xbf9fa8b8 count=0x2004 pos=0xcf2e9f98 ret=?
return: 12

To handle such situations (and many others, i.e. when name of argument was changed in
current kernel), you may use @defined expression, or @choose_defined which works like
ternary operator: @choose_defined($a, $b) is equivalent to @defined($a)? $a : $b.
Here is an example of @defined:
if (@defined($var->field)) {
 println($var->field);
}

If you want to print all arguments simultaneously, you should carefully handle each
argument. However, SystemTap can do it automatically. Such strings provided in
meta-variables:

• $$parms contains function arguments with their names
• $$locals contains local variables with their names
• $$vars contains both $$parms and $$locals
• $$return contains return value. An example of $$vars may be found above.

Finally, SystemTap allows to convert arguments to strings, including pretty representation
of structure pointers when all fields are read, if trailing dollar sign is added to an argument:
stap -e '
 probe kernel.function("vfs_read") {
 println($file$); }'

References

• Built-in probe point types (DWARF probes)
• Troublesome Context Variables

Module 2: Dynamic tracing languages34

https://sourceware.org/systemtap/langref/Probe_points.html#SECTION00052000000000000000
https://sourceware.org/systemtap/wiki/TipContextVariables

Context
Definition

Probe context contains system state related to a fired probe, including:

• Register values
• Thread and process, which caused probe firing, including CPU where thread is running
• Currently executing probe

Context is provided as built-in variables in DTrace such as execname or as tapset functions
in SystemTap such as execname().

Userspace register values are available in DTrace through built-in variable uregs. In
SystemTap, they available through Embedded C and kernel function task_pt_regs, or a
special Embedded C variable CONTEXT, see for example implementation of uaddr() and
print_regs() tapset functions.

Here are some useful context information:

Description DTrace SystemTap

Current executing thread curthread task_current()

ID of current thread tid tid()

ID of current process pid pid()

ID of parent of current
process

ppid ppid()

User ID and group ID of
current process

uid/gid uid()/gid(), euid(), egid()

Name of current process
executable

execname curpsinfo->ps_fname execname()

Command Line Arguments curpsinfo->ps_psargs cmdline_*()

CPU number cpu cpu()

Probe names probeprov, probemod, probefunc,
probename

pp(), pn(), ppfunc(),
probefunc(), probemod()

References

• Built-in Variables
• Context Functions

Predicates
Predicates are usually go in the beginning of the probe and allow to exclude unnecessary

data from output, thus saving memory and processor time. Usually predicate is a conditional
expression, so you can use C comparison operators in there such as ==, !=, >, >=, , and
logical operators for logical AND, || for logical OR and ! for logical
negation, alas with calling functions or actions.

In DTrace predicate is a separate language construct which is going in slashes /
immediately after list of probe names. If it evaluated to true, probe is executed:
syscall::write:entry
/pid == $target/

35Module 2: Dynamic tracing languages

http://docs.oracle.com/cd/E19253-01/817-6223/chp-variables/index.html#6mlkidlfu
https://sourceware.org/systemtap/tapsets/context_stp.html

{
 printf("Written %d bytes", args[3]);
}

In SystemTap, however, there is no separate predicate language construct, but it supports
conditional statement and next statement which exits from the probe, so combining them
will give similar effect:
probe syscall.write {
 if(pid() != target())
 next;
 printf("Written %d bytes", $count);
}

Note that in SystemTap, probe will be omitted if condition in if statement is evaluated to
true thus making this logic inverse to DTrace.

Starting with SystemTap 2.6, it supports mechanism similar to predicates which is called
on-the-fly arming/disarming. When it is active, probes will be installed only when certain
condition will become true. For example:
probe syscall.write if(i > 4) {
 printf("Written %d bytes", $count);
}

This probe will be installed when i becomes more than four.

$target in DTrace (macro-substitution) and target() context function in SystemTap
have special meaning: they return PID of the process which is traced (command was provided
as -c option argument or its PID was passed as -p/-x option argument). In these examples
only write syscalls from traced process will be printed.

Warning

Sometimes, SystemTap may trace its consumer. To ignore such probes, compare process ID with stp_pid()
which returns PID of consumer.

Sometimes, if target process forking and you need to trace its children, like with -f option
in truss/strace, comparing pid() and even ppid() is not enough. In this case you may
use DTrace subroutine progenyof() which returns non-zero (treated as true) value if current
process is a direct or indirect child of the process which ID was passed as parameter. For
example, progenyof(1) will be true for all userspace processes because they are all children
to the init.

progenyof() is missing in SystemTap, but it can be simulated with task_*() functions
and the following SystemTap script (these functions are explained in Process Management):
function progenyof(pid:long) {
 parent = task_parent(task_current());
 task = pid2task(pid);

 while(parent task_pid(parent) > 0) {
 if(task == parent)
 return 1;

 parent = task_parent(parent);
 }
}

probe syscall.open {
 if(progenyof(target()))

Module 2: Dynamic tracing languages36

 printdln(" ", pid(), execname(), filename);
}

Assume that 2953 is a process ID of bash interactive session, where we open child bash
and call cat there:
root@lktest:~# bash
root@lktest:~# ps
 PID TTY TIME CMD
 2953 pts/1 00:00:01 bash
 4794 pts/1 00:00:00 bash
 4800 pts/1 00:00:00 ps
root@lktest:~# cat /etc/passwd
[...]

cat is shown by this script even if it is not direct ancestor of bash process that we are
tracing:
stap ./progeny.stp -x 2953 | grep passwd
4801 cat /etc/passwd

Types and Variables
In this section we will speak about typing in dynamic tracing languages and variable

scopes. Details on complex types are covered in further sections.

Variable types may be split in several categories. First and simpler one, is scalar types
which consist of integral types: int, uint32_t, etc, floating point types are not supported.
Second large group is pointers. Unlike C, dynamic tracing languages provide explicit string
type. SystemTap and DTrace support associative arrays and agreggations for keeping
statistics data. Finally, there is a set of complex types such as structures, enumerations,
unions and arrays. DTrace supports complex types, their definitions and even aliasing
through typedef, while in SystemTap they are implicitly used for DWARF variables, but in
scripts they are explicitly available only in Embedded C.

You can explicitly declare variable types in DTrace, thus long, uintptr_t, string, etc.
are valid identifiers in it, but it is optional for non-global variables. In SystemTap, there are
only two primitive types: long for keeping any scalar integral type or pointer, and string
for strings. Types are explicitly specified only as return values of functions or function
arguments. If types are not specified, then they are deduced from first assignment, but
dynamic typing is disallowed: in case of type incompatibility error operands have
incompatible types or type mismatch will be printed. DTrace also supports C-style type
casting:
printf("The time is %lld\n", (unsigned long long) timestamp);

37Module 2: Dynamic tracing languages

There are four variable scopes in DTrace: external, global, local and thread-local.
SystemTap doesn't support thread-local variables, but it can be emulated via associative
arrays.

In this image variable lifetimes are shown as arrows on the right of the drawing.

External variables

External variables are exported by kernel or application, for example tunable module
parameters, thus they have longest lifespan that goes beyond running tracing scripts. In
DTrace external variables are kept in separate namespace, and accessible with backtick (`)
prefix:
dtrace -qn '
 BEGIN {
 printf("Maximum pid is %d\n", `pidmax);
 exit(0); }'

In earlier versions of SystemTap they can be only read by using Embedded C capabilities:
stap -g -e '
 function get_jiffies:long() %{
 THIS->__retvalue = jiffies; %}
 probe timer.us(400) {
 printf("The time is %d jiffies\n",
 get_jiffies()); }'

Recent versions adopted a @var-expression, which accept name of variable and optionally a
path to a source file where it is located like in function probes: @var("jiffies").

Global variables

Global variables are created on script start and destroyed when script finishes their
execution. They are often initialized by begin probes and sometimes printed in the end probe.
In SystemTap global variables are declared with global keyword:
global somevar;

Module 2: Dynamic tracing languages38

Probe

context
switch

Probe

local
local

script start

thread-clause
thread-clause

global

external

script exit

You can also put an initializer to a global variable, thus it is useful to simulate constants and
enumerations:
global READ = 1;

Global variables in DTrace may be declared with type keyword, but that is optional:
uint32_t globalvar;

Aggregations in DTrace are implicitly global.

Global variables in probes are accessible by their names: globalvar += 1;.

Local variables

Local (or clause-local in terms of DTrace) variables lifespan are the shortest of all which
last only for single probe, or for a probe-prologue followed by probe in SystemTap. There is
no need to define them in SystemTap, they may be used after first assignment:
probe kernel.function("vfs_write") {
 pos = $file->f_pos;
}

In DTrace, their types may be optionally defined with this keyword, and later used with
this-> prefix:
this uint32_t localvar;

::write:entry {
 this->localvar = (uint32_t) arg0;
}

Warning

DTrace doesn't check scopes for local variables nor initialize it with zero, thus allowing racing conditions. Take
the following script as an example, which counts the number of read() system calls:

int global;
this int local;

syscall::read:entry {
 this->local++;
 global++;
}
syscall::read:return {
 printf("local: %d global: %d\n", this->local, global);
}

If you run this script in parallel with single dd process, everything will look fine:

dtrace -qs clauselocal.d -c "dd if=/dev/zero of=/dev/null"
[...]
local: 26765 global: 26765
[...]

But when you run multiple dd processes, local and global numbers will eventually differ, because in case of
race condition, new space will be allocated:

39Module 2: Dynamic tracing languages

26764

1
26765

local++

local++

global++

global++

Thread-local variables

Thread local variables are created in a context of a thread, and after thread is switched, you
will access a new instance of variable. Their syntax is similar to local DTrace variables, but
use self keyword instead of this. They are extremely useful in passing data between
distinct probes:
self int readfd; // Optional

syscall::read:entry {
 self->readfd = arg0;
}
syscall::read:return {
 printf("read %d --> %d\n", self->readfd, arg1);
}

Thread-local variables are not supported by SystemTap but may be easily simulated with
associative array whose key is a thread ID:
global readfd;
probe syscall.read {
 readfd[tid()] = fd;
}
probe syscall.read.return {
 printf("read %d --> %d\n", readfd[tid()], $return);
}

In this case thread-local variable readfd is used to pass value from entry (call) probe to
return probe. Same effect can be achieved with @entry expression in SystemTap, however it
is limited to DWARF probes and its arguments, so prologue variable fd is not accessible
with it:
probe syscall.read.return {
 printf("read %d --> %d\n", @entry($fd), $return);
}

Other use-case for thread-local variables is when you want to trace only processes that did
certain actions, and filter others. In this case, you will introduce a kind of thread-local
do_trace flag, which will be set to 1 if action was done (and probably, reset later), and later
check this flag in predicate. If value is not set in associative array in SystemTap or as
thread-local variable in DTrace, it defaults to 0, which by default disables probes. This
approach is idiomatic, and for example used in Dynamic code analysis for building code
graphs.

References

• Variables
• Data types
• Variables

Module 2: Dynamic tracing languages40

http://docs.oracle.com/cd/E19253-01/817-6223/chp-variables/index.html
https://sourceware.org/systemtap/langref/Language_elements.html#SECTION00062000000000000000
https://sourceware.org/systemtap/langref/Components_SystemTap_script.html#SECTION00043000000000000000

Pointers
Pointer is a special variable in C language that points (references) to a some data in

memory, thus pointer usually contains address of that data. It is a common way to keep
complex data structures in dynamically allocated memory, and pass a pointer between
functions or share data among them by using same pointers at all consumers. SystemTap
supports pointers in DWARF variables, but for locals it treats them as long. DTrace
simulates full support of pointers, arrays and even dynamic allocation of them. To create a
pointer you can use operator like you do in C.

Things in kernel get complicated because some pointers point to a user address space
which is not trivially accessible, so instead of dereferencing it special function is called to
copy data in or out. For example, when application issues open() system call, it keeps
pathname argument as a string located in user address space, and passes only pointer to an
argument. Moreover, some pointers may be invalid, and dereferencing them may cause
system fault. So instead of working with raw pointers, dynamic tracing languages provide set
of interfaces. In the following example, badp is bad pointer, which points nowhere, kstr
points to a data in kernel address space, while ustr references string in user address space:

Accessing a data in kernel address space in DTrace is performed by simple dereferencing it
in C-style. For example, fop_open() function accepts pointer to pointer to vnode_t, so to
get actual address of vnode_t, you need to dereference it:
dtrace -n '
 fbt::fop_open:entry {
 printf("0x%p", (uintptr_t) *args[0]); }'

User address space may be read in DTrace by using copyin, copyinstr or copyinstr
subroutines, or be overwritten with copyout/copyoutstr (requires destructive actions to be
allowed). For example, poll system call accepts array of fds, which are located in userspace
and should be copied into address space of script before being printed:
dtrace -n '
 this struct pollfd* fd0;

 syscall::pollsys:entry
 /arg1 != 0/
 {
 this->fd0 = copyin(arg0, sizeof(struct pollfd));
 printf("%s: poll %d\n", execname, this->fd0->fd); }'

SystemTap allows to access kernel and user memory through set of functions which are
implemented in tapsets conversions.stp and conversions-guru.stp. They also allow to

41Module 2: Dynamic tracing languages

u v w x y z

A B C D E F \0

FF FF 00 10

FFFF0000

FFFF0008

FFFF0010

FFFF0018

00 01 00 10

00010000

00010008

00010010

00010018

00010020

00010028

\0

char* kstr;

char* ustr;

char* badp; BA AD CA FE

U
se

r
ad

dr
es

s
sp

ac
e

K
er

ne
l

ad
dr

es
s

sp
ac

e

specify different types such as ulong or int16, but they silently convert their result to long
or string

• kernel_ reads kernel memory. For example, vfs_write call changes file position, thus
it gets position as pointer to a struct file member or a stack variable. To trace it, we have
to dereference it:
stap -e '
 probe kernel.function("vfs_write").return {
 off = kernel_long($pos);
 printf("write: off=%d\n", off); }'

• set_kernel_ writes kernel memory if Guru-mode is enabled
• user_ reads userspace memory
• kread() used for safely reading kernel space in Embedded C

Summarizing all that, we should use following to read or write first character of strings in
example above:

Operation Pointer DTrace SystemTap

read kptr *((char*) arg0) kernel_char($kptr)

badp kernel_char($kptr)
with try-catch-block

uptr *((char*) copyin(arg0, 1)) user_char($uptr)

write kptr - set_kernel_char($kptr, 'M')

badp set_kernel_char($kptr, 'M')
with try-catch-block

uptr this->c = (char*) alloca(1);
*this->c = 'M';
copyout(this->c, arg0, 1);

-

Safety notes

To avoid system panicking, before actually accessing memory through raw pointer, DTrace
and SystemTap have to:

• Check correctness of userspace pointer by comparing it with base address
• Check correctness of address by comparing it to a forbidden segments (such as

OpenFirmware locations in SPARC).
• Add extra checks to page fault interrupt handlers (in case of DTrace) or temporarily

disable pagefaults (SystemTap)

If you access to incorrect address, DTrace will warn you, but continue execution: dtrace:
error on enabled probe ID 1 (ID 1: dtrace:::BEGIN): invalid address (0x4)
in action #1 at DIF offset 16 SystemTap prints similiar message and then fail:
ERROR: kernel string copy fault at 0x0000000000000001 near identifier
'kernel_string' at /usr/share/systemtap/tapset/conversions.stp:18:10

Warning

Sometimes even correct addresses cause faults if data they point to is not in memory.

Module 2: Dynamic tracing languages42

References

• Pointers and arrays
• Actions and Subroutines
• String and data retrieving functions Tapset
• String and data writing functions Tapset

Strings
Strings in dynamic tracing languages are wrappers around C-style null-terminated char*

string, but they behave differently. In SystemTap it is simple alias, while DTrace add extra
limitations, for example, you can't access single character to a string. String operations are
listed in following table:

Operation DTrace SystemTap

Get kernel string stringof (expr) or (string)
expr

kernel_string*()

Convert a scalar type to a
string

sprint() and sprintf()

Get userspace string copyinstr() user_string*()

Compare strings ==, !=, >, >=, , –- semantically equivalent to strcmp

Concatenate two strings strjoin(str1, str2) str1 . str2

Get string length strlen(str)

Check if substring is in string strstr(haystack, needle) isinstr(haystack, needle)

Note that this operations may be used in DTrace predicates, for example:
syscall::write:entry
/strstr(execname, "sh") != 0/
{}

References

• Strings
• Actions and Subroutines
• Strings
• A collection of standard string functions

Structures
Many subsystems in Linux and Solaris have to represent their data as C structures. For

example, path to file corresponds from file-related structure dentry and filesystem-related
structure vfsmnt:
struct path {
 struct vfsmount *mnt;
 struct dentry *dentry;
};

Structure fields are accessed same way it is done in C: in DTrace depending on what you
are getting you need to use -> for pointers and . for structures. In SystemTap you should
always use -> which will be contextually converted to . where needed. Information about
structures is read from CTF sections in Solaris and DWARF sections in Linux, including

43Module 2: Dynamic tracing languages

http://docs.oracle.com/cd/E19253-01/817-6223/chp-pointers/index.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-actsub/index.html
https://sourceware.org/systemtap/tapsets/conversions.stp.html
https://sourceware.org/systemtap/tapsets/conversions-guru.stp.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-strings/index.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-actsub/index.html
https://sourceware.org/systemtap/langref/Language_elements.html#SECTION00062300000000000000
https://sourceware.org/systemtap/tapsets/string.stp.html

field names. To get C structure you may need to cast a generic pointer (void* in most cases)
to a needed structures. In DTrace it is done using C-style syntax:
(struct vnode *)((vfs_t *)this->vfsp)->vfs_vnodecovered

Conversion in SystemTap is used more often, because in many places, typed pointers are
coerced to generic long type. It is performed with @cast expression which accepts address,
name of structure as string (struct keyword is optional), and an optional third parameter
which contains name of include file, for example:
function get_netdev_name:string (addr:long) {
 return kernel_string(@cast(addr, "net_device")->name)
}

References

• Structs and Unions
• Expressions

Exercise 1
Write opentrace.d and opentrace.stp scripts which are tracing open() system calls.

They should print following information in one line:

• Call context: name of executable file, process ID, user and group IDs of user and group
which are executing process.

• Path to file which should be opened.
• A string containing open() flags O_RDONLY, O_WRONLY, O_RDWR, O_APPEND, O_CREAT
• Return value of system call

For example:
tee[939(0:0)] open("/tmp/test", O_WRONLY|O_APPEND|O_CREAT) = 3

Bit flags values are presented in following table:

Flag Solaris Linux (x86)

O_RDONLY bits 0-1 are not set

O_WRONLY 1 1

O_RDWR 2 2

O_APPEND 8 1024

O_CREAT 256 64

Test script that your created by experimenting with redirection to file or a pipe with tee
tool:
cat /etc/inittab > /tmp/test
cat /etc/inittab >> /tmp/test
cat /etc/inittab | tee /tmp/test
cat /etc/inittab | tee -a /tmp/test

Warning

In Solaris 11 open() system call was replaced with more generic openat().

Optional: Modify your scripts so only files that have "/etc" in their path will be shown.

Module 2: Dynamic tracing languages44

http://docs.oracle.com/cd/E19253-01/817-6223/chp-structs/index.html
https://sourceware.org/systemtap/langref/Language_elements.html#SECTION000661000000000000000

Associative arrays
Definition

Associative array is a sequence of values which are accessible through one or more keys. Any types may be
used for hashing, but they have to be comparable, and in some cases hashable.

Associative arrays are useful for saving last observable state related to a some object, so it
can be reused in subsequent probes. For example, let's save last read or write operation
performed on file. You will need to define keys and value types in DTrace:
string last_fop[int, int];
syscall::read:entry, syscall::write:entry {
 last_fop[pid, (int) arg0] = probefunc;
}

In SystemTap, however, they are deduced from the assignment:
global last_fop;
syscall.read, syscall.write {
 last_fop[pid(), $fd] = pn();
}

To delete entry from an associative array, it should be assigned to 0 in DTrace or deleted
using delete array[key1]; expression in SystemTap. If value does not exist, both DTrace
and SystemTap will return 0 as a default value.

In DTrace you only can access value in associative array knowing its key, in SystemTap
along with that you can walk entire array with foreach statement:
foreach([pid+, fd] in last_fop limit 100) {
 printf("%d\t%d\t%s\n", pid, fd, last_fop[pid, fd]);
}

Variables for keys are listed in square braces. If variable name ends with + or -, than keys
will be sorted in ascend or descend order correspondingly (only one key may be used for
sorting). Optional limit N part allows to limit amount of entries.

Maximum amount of entries that associative array can keep is limited by dynvarsize
tunable in DTrace or MAXMAPENTRIES in SystemTap. Additionally, you may explicitly
specify maximum number of entries in array:
global array[SIZE];

Warning

Starting with SystemTap 2.1 it allocates MAXMAPENTRIES entries for associative array on per-cpu basis (using not
only online, but possible CPUs too) at start (to avoid further allocation faults). Also, it allocates memory for
strings statically too. So to keep associative array with string key you will need at least NR_CPUS *
MAXMAPENTRIES * MAP_STRING_LENGTH which gives 128 megabytes of memory on CentOS 7.0 x86_64.

References

• Variables/Associative arrays
• Associative arrays

45Module 2: Dynamic tracing languages

http://docs.oracle.com/cd/E19253-01/817-6223/chp-variables/index.html#6mlkidlfr
https://sourceware.org/systemtap/langref/Associative_arrays.html

Aggregations
Aggregations are most useful for evaluating system performance (they are called statistics

in SystemTap). Aggregation will update intermediate set of parameters when new value is
added. Overall value is calculated from that intermediate set when its printing is requested.
Let's for example see how it works for mean value –- dynamic tracing system saves count of
added values and their sum, and when values need to be printed, sum is divided to a count:

Aggregations in DTrace reside in separate namespace: each name of aggregation begins
with at-symbol @. Single at-symbol @ is an alias to @_ and is a shorter possible aggregation
name which is useful for one-liners. Moreover, if it was not printed in the END probe, or
timer probe, DTrace will automatically print it for you. There is no need to declare
aggregation, and it support key access same way associative array does. When value is added
to a aggregation, it is "assigned" to a return value of aggregating function, i.e. @fds =
avg(arg0); will create an aggregation which calculates mean value of arg0.

SystemTap have a statistics. They are do not support indexing like associative arrays (but
they may be a values in associative arrays), thus they are special kind a variable. To create a
statistic you need to use aggregate operator instead of assignment operator =, for
example: fds . Aggregating function is used when result is printed, and
begins with @, i.e. @avg(fds) will return mean value of statistic fds.
This allows to use single statistic for multiple functions wherever
possible.

Here are list of aggregating functions (note that in SystemTap they have to be preceded
with @):

• count –- counts number of values added
• sum –- sums added value
• min/max/avg –- minimum, maximum and mean value, respectively
• stddev –- standard deviation (only in DTrace)
• lquantize –- prints linear histogram (hist_linear in SystemTap)
• quantize –- prints logarithmic histogram (hist_log in SystemTap)

The following actions may be performed on aggregations:

Action DTrace SystemTap

Add a value @aggr[keys] = func(value); aggr[keys]

Print printa(@aggr) or printa("format
string", @aggr1, @aggr2, ...)

println(@func(aggr)) (use foreach
in case of associative arrays).

Flush values and keys clear(@aggr) (only values) or
trunc(@aggr) (both keys and values)

delete aggr or delete aggr[keys]

Normalize normalize(@aggr, value); and
denormalize(@aggr);

Use division / and multiplication * on
results of aggregating functions

Limit number of values trunc(@aggr, num) Use limit clause in foreach

Module 2: Dynamic tracing languages46

aggr <<< 10SystemTap:

DTrace:

@avg(aggr)

@ = avg(10)

aggr <<< 20

@ = avg(20) printa(@)

t
count=1
sum=10

count=2
sum=30

15

Warning

Aggregations may be sorted in DTrace using aggsortkey, aggsortpos, aggsortkeypos and aggsortrev
tunables.

Aggregations are extremely useful for writing stat-like utilities. For example, let's write
utilities that count number of write system calls and amount of kilobytes they written.

Script file scripts/dtrace/wstat.d

#pragma D option aggsortkey
#pragma D option aggsortkeypos=0

syscall::write:entry
{
 @wbytes[pid, execname, arg0] = sum(arg2);
 @wops[pid, execname, arg0] = count();
}

tick-1s
{
 normalize(@wbytes, 1024);

 printf("%5s %12s %3s %7s %7s\n",
 "PID", "EXECNAME", "FD", "OPS", "KBYTES");
 printa("%5u %12s %3u %7@d %7@dK\n", @wops, @wbytes);
 clear(@wbytes);
}

Note that aggregations are follow after keys in printa format string, and they are going in
the same order they are passed as printa parameters. Format fields for aggregations use @
character. Sorting will be performed according to a PID (due to aggsortkey tunable), not by
number of operations or amount of bytes written. Option aggsortkeypos is redundant here,
because 0 is default value if aggsortkey is set.

SystemTap has similar code, but printa is implemented via our own foreach cycle. On
the other hand, we will keep only one associative array here:

Script file scripts/stap/wstat.stp

global wstat;

probe syscall.write {
 wstat[pid(), execname(), fd]

Output will be similar for DTrace and SystemTap and will look like:
PID EXECNAME FD OPS KBYTES
15881 sshd 3 1 0
16170 stapio 1 1 0
16176 python 8 8052 32208
16176 python 7 8045 32180
16176 python 10 8007 32028
16176 python 9 8055 32220

47Module 2: Dynamic tracing languages

References

• Aggregations
• Statistics (aggregates)

Time
A man used to live with a calendar and 24-hour representation of time. Coordinated

Universal Time (UTC) is used for that now. These details are not needed for most kernel or
application processes, so there is multiple time sources available for tracing tools:

Time source DTrace SystemTap

System timer is responsible for handling periodical events in
kernel such as context switch. System timer usually ticks at
constant frequency (but ticks may be omitted in tickless
kernels). Interval between firing timer is usually referred as
special unit of time: tick, lbolt in Solaris or jiffy in Linux. Timer
frequency in Linux can be get using HZ() function.

`lbolt or
`lbolt64

jiffies()

Processor cycles counter is a special CPU register which act as
a counter which increases on each cycle, such as TSC in x86 or
%tick in SPARC. It may not be monotonic.

get_cycles()

Monotonic time. Starts at unspecified moment of time (usually
at system boot), but ticks with constant intervals. May use
high-resolution time source such as HPET on x86, but may
impose some jitter between CPU cores or CPUs.

timestamp local_clock_()
or cpu_clock_()

Virtual monotonic time of thread. Similar to previous time
source, but only accounts when thread is on CPU, which is
useful to calculate CPU usage of a thread

vtimestamp

Real time or Wall-clock time. Monotonic time source which
starting point is an UNIX Epoch (00:00:00 UTC, Thursday, 1
January 1970). May use extra locks, access RTC, so it generally
slower than previous time sources

walltimestamp gettimeofday_()

In this examples is one of (s –- seconds, ms –- milliseconds, us –- microseconds and ns
–- nanoseconds). DTrace time sources always have nanosecond resolution.

Generally speaking, monotonic time sources are better for measurement relative time
intervals, while real time is used if you need precise timestamp of an event (i.e. for
cross-referencing with logs). To print a real timestamp, use ctime() function in SystemTap
which converts time to string, or use %Y format specifier in DTrace print functions.

References

• Built-in Variables
• Timestamp Functions

Module 2: Dynamic tracing languages48

http://docs.oracle.com/cd/E19253-01/817-6223/chp-aggs/index.html
https://sourceware.org/systemtap/langref/Statistics_aggregates.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-variables/index.html#6mlkidlfu
https://sourceware.org/systemtap/tapsets/timestamp_stp.html

Printing
As we mentioned earlier, DTrace and SystemTap are printing to a special channel

established between probe handlers and consumer process. SystemTap maintains multiple
channels, and some of them support prioritized printing through log() and warn()
functions.

A simplest printing doesn't allow any formatting. It is performed via trace() action in
DTrace which accepts only single argument. In SystemTap it is performed through
print[d][ln] functions which accept unspecified number of arguments, and may use first
argument as delimiter (should be constant) if d suffix is present, and add a newline if ln
suffix is present. I.e. printdln(",", $fd, $pathname) will print comma-separated line
with two parameters. Formatting output is supported through using printf() function which
accepts format string and unspecified number of arguments. Rules for creating format strings
are similiar to C standard printf() function including support for various such as %p stands
for pointer, setting width and alignment of field, etc. Dynamic tracing languages are strict
about types of arguments and format strings.

DTrace allows to print a memory dump using tracemem() action which accepts address
and number of bytes to be printed (should be constant). There is no such function in
SystemTap, but it can be simulated using for-cycle, kernel_int() functions and printf()
or use %m format specifier with width modifier which is mandatory in this case (and sets
length of memory area to be printed). Also, in some cases pretty conversion to a strings is
allowed, i.e. inet_ntop() in DTrace and ip_ntop() in SystemTap allow to convert
IP-address to a string.

To reduce competition for output buffers in multicore systems, SystemTap and DTrace
allocate buffers on per-cpu basis. Then they need to extract data from them, they switch
buffers and walk over it. Consider following example: process A starts on CPU 0 while
process B starts on CPU 1, than context switch occurs and both processes migrating on
opposite CPU (this is unrealistic situation for scheduler, so it is only an example) as shown
on picture:

In this example you will get the following output:
new A
exec B
new B
exec A

49Module 2: Dynamic tracing languages

context
switch

new A new B

exec Aexec B

cpu0 cpu1

consumer collects
buffers

This makes interpretation of output is extremely complicated especially in case of dozens
events (such as tracing ZIO pipeline in ZFS filesystem). This problem can be solved only by
adding extra key related to a request (such as process ID, like A and B in this example) to a
each line and group events in post-processing.

References

• Actions and Subroutines
• Output Formatting
• Formatted output

Speculations
Predicates is one form to get rid to useless event, but they only allow to decide when probe

is firing. What if there are several probes and decision can be made only in the last one? To
answer that problem, dynamic tracing languages support speculations. For example you may
want to trace only requests which are finished with an error code.

Speculations allow to create independent output buffer for each request using
speculation() function which returns id of that buffer. You may put it to an associative
array using some vital request information as a key, for example pointer to a structure. While
tracing you may either print data from the buffer to a main buffer using commit() function
or reject it using discard() function. Maximum number of speculations in DTrace is
regulated by nspec tunable.

To add an output to a speculation in DTrace, call speculate() function which accepts
single argument –- speculation id. After that call, all subsequent print statements in current
probe body will be redirected to a speculation buffer. In SystemTap speculate() accepts
two parameters: one for speculation id and second for string to be put into speculation, so you
should use sprintf() instead of printf() to print to a buffer.

Speculations are used in Block Input-Output scripts.

References

• Speculative Tracing
• Speculation

Tapsets translators
We already discussed problem with probe stability. Some issues may be related to changing

data structures in kernel, or several variants may exist in kernel, for example for 32- and
64-bit calls. Let's see how access to fields of that structure may be unified.

DTrace has a translators for doing that:

Script file scripts/dtrace/stat.d

struct stat_info {
 long long st_size;
};

translator struct stat_info {
 st_size = * ((long long*) copyin(s + offsetof(struct stat64_32, st_size),
 sizeof (long long)));

Module 2: Dynamic tracing languages50

http://docs.oracle.com/cd/E19253-01/817-6223/chp-actsub/index.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-fmt/index.html
https://sourceware.org/systemtap/langref/Formatted_output.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-spec/index.html
https://sourceware.org/systemtap/tapsets/speculation.stp.html

};

syscall::fstatat64:entry
{
 self->filename = copyinstr(arg1);
 self->statptr = arg2;
}

syscall::fstatat64:return
{
 printf("STAT %s size: %d\n", self->filename,
 xlate (self->statptr)->st_size);
}

In this example translator describes rules of converting source structure stat64_32 to a
structure with known format defined in DTrace stat_info. After that, xlate operator is
called which receives pointer to stat64_32 structure to a stat_info. Note that our
translator also responsible for copying data from userspace to kernel. Built-in DTrace
translators are located in /usr/lib/dtrace.

SystemTap doesn't have translators, but you can create prologue or epilogue alias which
performs necessary conversions before (or after, respectively) probe is called. These aliases
are grouped into script libraries called tapsets and put into /usr/share/systemtap/tapset
directory. Many probes that we will use in following modules are implemented in such
tapsets.

Linux has several variants for stat structure in stat() system call, some of them
deprecated, some are intended to support 64-bit sizes for 32-bit callers. By using following
tapset we will remove such differences and make them universally available through
filename and size variables:

Script file scripts/stap/tapset/lstat.stp

probe lstat = kernel.function("sys_lstat64").return ? ,
 kernel.function("sys32_lstat64").return ? {
 filename = user_string($filename);
 size = user_uint64(@cast($statbuf, "struct stat64")->st_size);
}

probe lstat = kernel.function("sys_newlstat").return ? {
 filename = user_string($filename);
%(arch == "x86_64"
%? size = user_uint64(@cast($statbuf, "struct stat")->st_size);
%: size = user_uint32(@cast($statbuf, "struct stat")->st_size);
%)
}

This example is unrealistic: it is easier to attach to vfs_lstat function which has universal
representation of stat structure and doesn't involve copying from userspace. Summarizing
the syntax of creating aliases:
probe alias-name {=|+=} probe-name-1 [?] [,probe-name-2 [?] ...] probe-body

Here = is used for creating prologue aliases and += is for epilogue aliases. Question mark
? suffix is optional and used if some functions are not present in kernel –- it allows to choose
probe from multiple possibilities.

51Module 2: Dynamic tracing languages

Warning

Note that this tapset only checks for 64-bit Intel architecture. You will need additional checks for PowerPC,
AArch64 and S/390 architectures.

After we created this tapset, it can be used very easy:

Script file scripts/stap/lstat.stp

probe lstat {
 printf("%s %d\n", filename, size);
}

Also, sometimes we have to define constants in dynamic tracing scripts that match
corresponding kernel or application constants. You can use enumerations for that in DTrace,
or define a constant variable with inline keyword:
inline int TS_RUN = 2;

You may use initializer for global variable to do that in SystemTap:
global TASK_RUNNING = 0;

If you have enabled preprocessor with -C option, you may use #define to create macro as
well.

References

• Translators
• Probe aliases

Exercise 2
Modify scripts from Exercise 1 so they count following statistics for processes that are

running in a system:

• number of attempts to open existing file;
• number of attempts to create a file;
• number of successful attempts.

At a period that is defined as command line arguments (specified in seconds) script should
print:

• Current time and day in human-readable format.
• Table that contains gathered statistics per process along with that process name and PID.

Numbers should be cleared during each iteration.

You can use module file_opener to demonstrate your scripts. This module uses working
directory which is passed as root_dir parameter, fills it with some files that are created
preliminary (their number is set by created_files parameter). While executing request, it
uses file random variable (which range is cut to [1;max_files)) and either tries to create a
file or open it depending on create parameter.

Run several experiments using TSLoad workload generator varying created_files
parameter and compare the results:
EXPDIR=/opt/tsload/var/tsload/file_opener
for I in 1 2 3; do
 mkdir /tmp/fopen$I
 tsexperiment -e $EXPDIR run \
 -s workloads:open:params:root_dir=/tmp/fopen$I \

Module 2: Dynamic tracing languages52

http://docs.oracle.com/cd/E19253-01/817-6223/chp-xlate/index.html
https://sourceware.org/systemtap/langref/Components_SystemTap_script.html#SECTION00042000000000000000

 -s workloads:open:params:created_files=$((I * 160))
done

Try to explain differences you get from the nature of file_opener workload generator
module.

53Module 2: Dynamic tracing languages

Module 3: Principles of dynamic
tracing

Applying tracing
As we mentioned in Tracing, it is used for statistics collection and performance analysis,

dynamic kernel or application debug, system audit. Imagine the situation in which various
processes running by two different users are opening files:

What problems can occur and how they are solved by dynamic tracing? Users can complain
to very slow opening of a file, so we need to do performance analysis. First of all, we have
confirm user complaints by measuring time spent in open(), read() and write() system
calls. We can also try to cross-reference slow calls and filesystems on which they occur (by
gathering mount paths), if problems are caused by bad NAS or disk. If the problem still
exists, than you will need to go down VFS stack, i.e. by measuring time spent in block I/O or

Module 3: Principles of dynamic tracing54

open()

open()

chip$ less some_file

dale$ cat other_file

b
a
s
h

b
a
s
h

l
e
s
s

c
a
t

in lookup operations.

If user encounters errors while opening files, then you will need to trace errno values.
These values are usually returned by system call functions in Linux, or saved into errno
variable in DTrace. To determine why system call returns an error, you will need dynamically
debug it by checking return values of callees. We will demonstrate it in following section. If
users try to attempt files they do not have permissions, we can record errno along with paths
and user ids, so by doing that we will perform system audit.

To demonstrate it on real example, we will use following examples and run cat
/etc/shadow from some non-root user:
dtrace -qn '
 syscall::open*:entry {
 printf("=> uid: %d pid: %d open: %s %lld\n",
 uid, pid, copyinstr(arg1), (long long) timestamp);
 }
 syscall::open*:return {
 printf("

SystemTap version:
stap -e '
 probe syscall.open {
 printf("=> uid: %d pid: %d open: %s %d\n",
 uid(), pid(), filename, local_clock_ns());
 }
 probe syscall.open.return {
 printf("

Here is sample output:
=> uid: 60004 pid: 1456 open: /etc/shadow 16208212467213

First of all, we measured time spent for open() system call: 16208212482430 —
16208212467213 = 15217 = 15.2 us. We can also see that user received an error (return
code is -1, while in case of correct call it would be positive) and now we may try to seek for
a source of a problem. Finally, we have audited attempt to open critical system file
/etc/shadow which is forbidden for users. So now we should find user name with id 60004
and politely ask him why he tried to open /etc/shadow file.

We will discuss how trace data may be analysed and what conclusion can be made from it
in this module. However, we will not introduce useful kernel or application probes as we will
discuss them in modules 4, 5. On the other hand, all examples in following modules will be
pure tracers, so you will need to add additional processing of results which will be discussed
in this module.

Dynamic code analysis
Definition

Dynamic program analysis is the analysis of computer software that is performed by executing programs on a
real or virtual processor.

We will refer to program analysis as code analysis since program is a product of code
compilation, On contrary, static code analysis is performed without actually running the
program. Code analysis helps to match program behaviour such as opening files, sending
messages over network to their code.

55Module 3: Principles of dynamic tracing

http://en.wikipedia.org/wiki/Dynamic_program_analysis

Backtraces (stacks)

Simplest way to perform code analysis is to print a backtrace.

Information

Code uses registers while function is executed most of the time. However, when function is called it will use
same registers (unless CPU supports register windows like SPARC processor do, however even they are
limited), so it has to save registers somewhere in memory including program counter, which will be used when
we return from function. Usually stack is used as memory for function locals and saved registers. It has special
rule of allocation: stack always grow to a increasing or decreasing address, each call allocate a memory beyond
current stack pointer (which is also a special register), and increases/decreases it, while each return resets value
of stack pointer to a previous, thus deallocating stack frame.

If we extract program counter and register values from a stack, we may be able to recover history of calling
functions and their arguments. For example, once I encountered panic in Solaris kernel. Printing stack (or, more
correctly backtrace) from crash dump uncovered this:

fzap_cursor_retrieve+0xc4(6001ceb7d00, 2a100d350d8, 2a100d34fc0, 0, 0, →
 2a100d34dc8)
[...]
zfsvfs_setup+0x80(6001ceb2000, 1, 400, 0, 6001a8c5400, 0)
zfs_domount+0x20c(60012b4a240, 600187a64c0, 8, 0, 18e0400, 20000)
zfs_mount+0x20c(60012b4a240, 6001ce86e80, 2a100d359d8, 600104231f8, 100, 0)
domount+0x9d0(2a100d358b0, 2a100d359d8, 6001ce86e80, 60012b4a240, 1, 0)
mount+0x108(600107da8f0, 2a100d35ad8, 0, 0, ff3474f4, 100)
[...]

Name prefix of top-level function implies that problem is in ZAP subsystem, and bottom function says that
problem occur while mounting file system. Second argument to zfs_domount function is the name of mounting
dataset. By reading string from it we were able to determine its name, make it readonly and boot the system.

In DTrace stack functions may be used as a keys to an associative arrays, or as separate
function calls (in that case they will just print the stack). Stack of kernel functions is available
by using stack() subroutine, while userspace application stack is available using ustack()
subroutine. Both of them have optional constant integer argument which specifies how many
stack frames should be printed. For example:
dtrace -c 'cat /etc/passwd' -n '
 syscall::read:entry
 /pid == $target/
 { stack(); ustack(); }'

There are multiple SystemTap functions that are responsible for printing stack:

• backtrace() and ubacktrace() returns a string containing a list of addresses in
hexadecimal format;

• print_stack() and print_ustack() get stack from string returned by backtrace
functions, convert addresses to symbols wherever possible and print it;

• print_backtrace() and print_ubacktrace() gets stack and prints it immediately,
thus no arguments accepted and no return values supplied;

• task_backtrace() accepts pointer to process/thread task_struct as a parameter and
returns its kernel stack wherever possible. Functions which have u in their names print
userspace backtrace, functions which do not have it, print kernel backtrace. For example:
stap -c 'cat /etc/passwd' -e '
 probe kernel.function("sys_read") {
 if(pid() == target())
 print_stack(backtrace());
 } '
stap -c 'cat /etc/passwd' -e '
 probe process("cat").function("read")

Module 3: Principles of dynamic tracing56

 { print_ubacktrace(); } '

Printing backtraces involves getting a symbol which matches some memory address which
involves digging into symtab or similar section of binary files. Dynamic tracing systems can
do that and print (DTrace) or return a symbol as a string (SystemTap) with following
functions:

Userspace DTrace SystemTap

Symbol usym(addr) or ufunc(addr) usymname(addr)

Symbol + offset uaddr(addr) usymdata(addr)

Library umod(addr) umodname(addr)

Kernel DTrace SystemTap

Symbol sym(addr) or func(addr) symname(addr)

Symbol + offset symdata(addr)

Library mod(addr) modname(addr)

Module, symbol + offset printf("%a", addr)

For example, some kernel interfaces like VFS are polymorphic, so they have a function
pointer table. You may extract these pointers and resolve them to a function name:
stap -c 'cat /etc/passwd' --all-modules -e '
 probe kernel.function("do_filp_open").return {
 if(_IS_ERR($return)) next;
 addr = $return->f_op->open;
 printf("name: %s, addr: %s, mod: %s\n",
 symname(addr), symdata(addr), modname(addr)); }'

Similar example for DTrace:
dtrace -c 'cat /etc/passwd' -n '
 fop_open:entry {
 this->vop_open =
 (uintptr_t)(*args[0])->v_op->vop_open;
 sym(this->vop_open); mod(this->vop_open); }'

In this example when cat will try to open file, tracing script catch this event and show
name of filesystem driver and function from it implementing open() call (unless it is generic
function from kernel).

Warning

By default SystemTap seeks only in vmlinux or binary executable files. To search over libraries and modules,
use -d, --all-modules and --ldd options as stated in SystemTap.

Warning

In DTrace symbols are resolved by consumer, not by DIF interpreter –- that is why they do not return strings,
and not usable in string functions. Moreover, if when buffers are switched module was unloaded or process is
finished, DTrace will fail to resolve symbols and print raw address in stack or symbol functions.

57Module 3: Principles of dynamic tracing

SystemTap and DTrace have different formats when printing backtrace symbol names:

Call trees

Note that backtraces show only a stack, a linear structure of functions that lead to event,
they do not include callees that were previously called, but already exited. For example in
following code (which obviously causes a segmentation fault):
char* foo() {
 return NULL; }
void bar() {
 char* str = foo();
 puts(str); }

we will see functions bar() and puts() on stack, but the problem is caused by foo()
function. To trace it along with other functions, we will need a call tree, which is close to call
graph which is collected during static calling analysis.

Global or thread-local flag (say traceme) is used to gather call tree. It is set when we enter
some function (which is considered a bound for tracing), and reset when we leave it. In
following example, we, for example, may limit tracing by using bar() as our bound.
Without using such boundary functions, tracing will have too much performance penalties.
Probes are attached to all functions, but predicate is used to check if traceme flag, so only
useful probes will be printed. Such probe only print names of functions preceded with indent
whether indent is set according to a depth of call, so output look like a tree.

DANGER!

To attach to all kernel functions in SystemTap you have to use kernel.function("*") construct. But even
with blacklisted probes, it will most likely panic system, or cause a serious system slowdown. To keep that from
happen, limit number of attached probes to a module or at least subsystem by using @path/to/files.c
construct like we do in following examples. In DTrace, however fbt::: is pretty safe and may only cause a
temporary small freeze (while probes are attached).

For example, let's see how this approach helps find a source of fault in system call. We will
try to execute cat not_exists file which will set errno to ENOENT as expected. Let's find a
kernel function that actually reports ENOENT. Usually, negative integer return value used for
that, so we will print return values in function return values. This approach is also useful
when you have no permission to open file and want to find a security hardening module that
stops you from doing that.

In SystemTap call tree indentation is performed through indent() and thread_indent()
which are maintaining internal buffer, and increase or decrease number of space characters in
it according to a number passed as argument to that functions. It is used in following script:

Script file scripts/stap/callgraph.stp

#!/usr/bin/stap

global traceme;
Module 3: Principles of dynamic tracing58

Function

syscall_call+0x7/0xb [kernel]

Offset

Module

SystemTap:

Function

unix`sys_call+0x100

OffsetModule

DTrace:

probe syscall.open {
 if(pid() != target() || filename != "not_exists")
 next;

 traceme = target();

 printf("=> syscall.open [%s]\n", execname());
}

probe syscall.open.return {
 if(pid() == target()) {
 traceme = 0;
 }
}

probe kernel.function("*@fs/*").call ?,
 kernel.function("*@fs/*").return ? {
 if(!traceme || traceme != pid())
 next;

 if(!is_return()) {
 printf("%s -> %s\n", indent(1), probefunc());
 }
 else {
 ret = 0;
 if(@defined($return))
 ret = $return;

 printf("%s

Output will be following:
./callgraph.stp -c "cat not_exists"
cat: not_exists: No such file or directory
=> syscall.open [cat]
0 : -> do_sys_open
[...]
11020 : -> do_filp_open
[...]
11982 : -> do_path_lookup
12277 : -> path_init
12378 : path_walk
12581 : -> __link_path_walk
[...]
14284 :
14339 : -> path_put
[...]
14655 : 14732 :
14755 :
[...]
15449 : 15851 :

So, now we can say that problem is in __link_path_walk function. This is output from
CentOS 6, in modern kernels __link_path_walk is deleted and responsible function would
be path_openat.

indent() function also prints time delta in microseconds since first call.
thread_indent() also prints information about execution thread and maintains separate

59Module 3: Principles of dynamic tracing

buffer for each thread.

DTrace consumer supports automatic indentation of output if flowindent tunable is set:

Script file scripts/dtrace/callgraph.d

#!/usr/sbin/dtrace -s

#pragma D option flowindent

syscall::open*:entry
/pid == $target copyinstr(arg0) == "not_exists"/
{
 self->traceme = 1;
}

syscall::open*:return
/self->traceme/
{
 self->traceme = 0;
}

fbt:::entry
/self->traceme probefunc != "bcmp"/
{

}

fbt:::return
/self->traceme probefunc != "bcmp"/
{
 trace(arg1);
}

Script output for ZFS filesystem will be similiar and reveal that ENOENT error was raised by
ZFS module:
dtrace -s ./callgraph.d -c "cat not_exists"
dtrace: script './callgraph.d' matched 69098 probes
cat: not_exists: No such file or directory
CPU FUNCTION
 0 -> open64
 0 openat64
 0 copen
[...]
 0 -> vn_openat
 0 -> lookupnameat
 0 -> lookupnameatcred
[...]
 0 -> fop_lookup
 0 -> crgetmapped
 0 zfs_lookup
[...]
 0
 0
 0 -> vn_rele
 0 0
 0
 0

Module 3: Principles of dynamic tracing60

 0
 0
[...]
 0 -> set_errno
 0
 0

More backtraces

You may also need to track state of kernel data structures or passing parameters during
tracing, if you wish to extend your knowledge about kernel or application. Now we know
from our traces that Linux uses __link_path_walk() and Solaris has lookuppnvp()
functions to lookup file on filesystems. Let's see, how they handle symbolic links. Let's create
one first:
touch file
ln -s file symlink

As you can see, Linux calls __link_path_walk recursively:
stap -e '
 probe kernel.function(%(kernel_v >= "2.6.32"
 %? "link_path_walk"
 %: "__link_path_walk" %)) {
 println(kernel_string($name));
 print_backtrace(); }' -c 'cat symlink'
symlink
 0xffffffff811ad470 : __link_path_walk+0x0/0x840 [kernel]
 0xffffffff811ae39a : path_walk+0x6a/0xe0 [kernel]
 0xffffffff811ae56b : do_path_lookup+0x5b/0xa0 [kernel]
[...]
file
 0xffffffff811ad470 : __link_path_walk+0x0/0x840 [kernel]
 0xffffffff811ade31 : do_follow_link+0x181/0x450 [kernel]
 0xffffffff811adc1b : __link_path_walk+0x7ab/0x840 [kernel]
 0xffffffff811ae39a : path_walk+0x6a/0xe0 [kernel]
[...]

Since this function was removed in recent kernels, this behaviour is not reproducible in
them.

In Solaris, however, this function is called only once –- for symbolical link:
dtrace -n '
 lookuppnvp:entry {
 trace(stringof(args[0]->pn_path));
 stack(); }' -c 'cat symlink'
 1 19799 lookuppnvp:entry symlink
 genunix`lookuppnatcred+0x119
 genunix`lookupnameatcred+0x97
 genunix`lookupnameat+0x6b
[...]

61Module 3: Principles of dynamic tracing

Profiling
Consider the following task: you need to know which functions are called more often than

others or spend most time when executing because it makes them perfect targets for code
optimization. You may do it by attaching to every function entry and exit point the following
script:
fbt:::entry {
 self->start = timestamp;
}

fbt:::return
/self->start/
{
 @fc[probefunc] = count();
 @ft[probefunc] = avg(timestamp - self->start);
}
tick-1s {
 printa("%s %@d %@d", @fc, @ft);
 trunc(@fc); trunc(@ft) }

DANGER!

This script is conceptual! Do not run it on real system.

If you were able to collect data with this script, you'll got population, but you couldn't do
that. Usually function call takes several processor cycles and a single instruction, but when
you run it, you'll need hundreds of instructions (for getting timestamp and writing to a
aggregation), which causes colossal overhead. Statistics theory, however, provides a solution
to that: instead of gathering entire population, you may reduce it to a sample, which is
representative (reproduces significant properties of a population). Collecting a sample is
called sampling, while sampling function calls is usually referred as profiling.

Definition

In software engineering, profiling is a form of dynamic program analysis that measures, for example, the space
(memory) or time complexity of a program, the usage of particular instructions, or the frequency and duration of
function calls. Most commonly, profiling information serves to aid program optimization.

Modern operating systems provide builtin profilers, such as OProfile and SysProf in Linux
which were replaced with perf subsystem since 2.6.31 kernel or er_kernel from Solaris
Studio. However, Dynamic tracing languages allow to build custom profilers.

A simplest profiler records process ID to see which processes or threads consume CPU
resources more than others, as we discussed about timer probes. They may be implemented
with following DTrace script:
dtrace -qn '
 profile-997hz {
 @load[pid, execname] = count();
 }
 tick-20s { exit(0); }'

Or in SystemTap:
stap -e 'global load;
 probe timer.profile {
 load[pid(), execname()]

Module 3: Principles of dynamic tracing62

If we want to go down to a function level, we need to access program counter register (or
instruction pointer in x86 terminology) each time profiling probe fires. We will refer to
program counter as PC later in this book. In DTrace these values are explicitly provided in
arg0 –- PC in kernel mode and arg1 –- PC in userspace mode in profiling probes.
Depending on if process was in kernel mode when profiling probe fired or not, arg0 or arg1
will be set to 0. Moreover, you may always get current userspace program counter using
uregs array: uregs[REG_PC]. There is also caller and ucaller built-in variables.

You can use addr() tapset function in SystemTap which returns userspace PC or kernel
PC depending on where probe were fired (some probes do not allow that, so 0 will be
returned). To get userspace address explicitly, use uaddr() function.

Warning

Note that we were used profile-997hz probe to avoid "phasing": if we'd used profile-1000hz probe, there
were a chance, that all probes were fired while system timer handler is working, thus making profiling useless
(we will see that 100% of time kernel spends in system timer). In SystemTap timer.profile uses system timer
for profiling, but addr() and uaddr() return correct values.

CPU performance measurement

Even if you collect program counter values, you will get what functions use CPU the most,
but that doesn't mean that utilize processor resources effectively. For example, it can spend
most of the time waiting for memory or cache or reset pipeline due to branch misprediction
instead of utilizing ALU for actual computations. Such wasted cycles are referred as stalled
in Intel processor documentation.

Modern processors allow to measure influence of such performance penalties through CPU
performance counters. Each time such event happens, CPU increments value of the counter.
When counter exceeds threshold, exception is arisen which may be handled by dynamic
tracing system. Or, counter may be read from userspace application, for example with rdpmc
assembly instruction on Intel CPUs.

You may use cpustat tool to get list of available CPU events in Solaris:
cpustat -h
[...]
event0: cpu_clk_unhalted.thread_p inst_retired.any_p

Description of such events may be found in CPU's documentation. SPARC counters are
described in the book "Solaris Application Programming", but it lacks description of newer
CPUs (SPARC T3 and later). However, documentation on SPARC T4 and T5 may be found
here: Systems Documentation. Solaris also provides CPU-independent generic counters
which names start with PAPI prefix.

Linux have separate subsystem that is responsible for providing access to CPU performance
counters: perf. It has userspace utility perf, which can show you list of supported events:
perf list
List of pre-defined events (to be used in -e):
 cpu-cycles OR cycles [Hardware event]
 instructions [Hardware event]

You can use userspace tools perf in Linux or cpustat/cputrack in Solaris to gather CPU
counters.

DTrace provides CPU counters through cpc provider (which is implemented through
separate kernel module). It probe names consists from multiple parameters:

63Module 3: Principles of dynamic tracing

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-servers-documentation-163529.html

EventName-{kernel|user|all}[-Mask]-Number

EventName is a name of event taken from cpustat output (and matches documentation
name in case of Intel CPUs). Following parameter defines a mode: kernel probes only
account kernel instructions, user only work for userspace, and all will profile both. Number is
a threshold for a counter after which probe will fire. Do not set Number to a small values to
avoid overheads and system lockup, 10000 provides is relatively accurate readings. Mask is
an optional parameter which allows to filter devices which accounted in performance
counters (such as memory controllers or cores) and should be a hexademical number.

For example, you may use probe PAPI_l3_tcm-user-10000 to measure number of
userspace misses to last-level cache which is L3 cache in our case:
dtrace -n '
 cpc:::PAPI_l3_tcm-user-10000
 /arg1 != 0/ {
 @[usym(arg1)] = count(); }
 END {
 trunc(@, 20);
 printa(@);
 }'

SystemTap provides access to CPU counter using perf tapset:
stap -l 'perf.*.*'
perf.hw.branch_instructions
[...]
stap -l 'perf.*.*.*.*'
perf.hw_cache.bpu.read.access

These probes are actually aliases for the following probes:
perf.type(type).config(config)[.sample(sample)][.process("process-name")][.counter("counter-name")]

type and config are numbers used in perf_event_attr –- their values may be found in
header linux/perf_event.h. sample is a number of events after which probe firing.
process-name allows to monitor only certain processes instead of system-wide sampling and
contains name of the process (path to executable). counter-name allows to set an alias for
performance counter which will be later used for @perf expression (see below).

To measure last userspace level cache misses in SystemTap, you may use following script:
stap -v -e '
 global misses;
 probe perf.hw_cache.ll.read.miss {
 if(!user_mode()) next;
 misses[probefunc()]

Warning

These examples were tested on Intel Xeon E5-2420 processor. Like we mentioned before, performance counters
are CPU-specific.

SystemTap allows to create per-processor counter which can be read later:
stap -v -t -e '
 probe perf.hw.instructions
 .process("/bin/bash").counter("insns") { }

 probe process("/bin/bash").function("cd_builtin") {
 printf(" insns = %d\n", @perf("insns"));
 }'

Module 3: Principles of dynamic tracing64

Warning

There is a bug PR-17660 which can cause BUG() in kernel when you use @perf in userspace. It seem to be
resolved in current SystemTap/Kernel.

Performance analysis
Computer users, system administrators and developers are interested in improving of

performance of computer systems and dynamic tracing languages are very handful in
analysing soft spots of computer systems. We will use two characteristics of computer system
to evaluate its performance most of the time: throughput and time spent for servicing request
(usually referred as latency). These two characteristics depend on each other as following
picture shows:

Information

For example, let's imagine a newspaper kiosk. Than number of customers per hour will be its arrival rate.
Sometimes, when clerk is busy while servicing customer, other customers will form a queue, which can is
measurable to queue length. Growing queues is a sign of the system's saturation. Throughput of the kiosk is the
number of customers which bought a newspaper per hour. However, if number of customers is too large, kiosk
couldn't service them all, and some of them will leave after waiting in line –- they are treated as errors. When
kiosk reaches its saturation point or the knee, throughput of the kiosk will fall, and number of errors will
increase, because clerk will be tired.

Latency consists of service time which depends on many factors: i.e. if customer need change or clerk can't find
copy of newspaper it will grow, and waiting time –- time spent by a customer waiting in queue. Utilization is
defined by a fraction time that clerk spends servicing their customers. I.e. if clerk spends 15 minutes to sell a
magazines or newspapers per hour, utilization is 25%.

These definitions are part of queueing theory which was applied to telephone exchange, but it is also applicable
to computer systems. Either network packet or block input-output operations may be considered as request,
while corresponding driver and device are considered as servers. In our kiosk example, customer were the
requests while clerk at the kiosk was the server.

To measure throughput we have to attach a probe to one of the functions responsible for
handling requests, and use count() aggregation in it. It is preferable to use the last function
responsible for that, because it will improve data robustness. Using a timer, we will print the
aggregation value and clear it. For example, throughput of disk subsystem may be measured
using following SystemTap script:
stap -e ' global io;
 probe ioblock.end {
 size = 0
 for(vi = 0; vi bi_vcnt; ++vi)

65Module 3: Principles of dynamic tracing

Latency

Throughput

Arrival
rate

Knee

https://sourceware.org/bugzilla/show_bug.cgi?id=17660

 size += $bio->bi_io_vec[vi]->bv_len;
 io[devname]

Or with DTrace:
dtrace -n '
 io:::done {
 @[args[1]->dev_statname] = sum(args[0]->b_bcount);
 }
 tick-1s {
 printa(@);
 clear(@);
 }'

To measure arrival rate, on contrary, we need first functions which handle request "arrival"
which are in our case ioblock.request and io:::start correspondingly. These probes
will be covered in Block Input-Output section.

Latency measurement is a bit more complicated. We will need to add probes to request
arrival and final handler and calculate time difference between these two moments. So we
need to save a timestamp of a request arrival and retrieve it at the final handler probe. The
easiest way to do that is thread-local variables, but it is not guaranteed that final handler will
be called from same context request was created from. For example, final handler may be
called from IRQ handler thread. In such cases we will need associative arrays and a unique
request key retrievable on both sides, which is usually an address of requests descriptor in
memory. For block input-output is struct buf in Solaris and struct bio in Linux. So
let's calculate mean latency in SystemTap:
stap -e ' global start, times;
 probe ioblock.request {
 start[$bio] = gettimeofday_us();
 }
 probe ioblock.end {
 if(start[$bio] != 0)
 times[devname]

Similar script is for DTrace:
dtrace -qn '
 io:::start {
 iostart[arg0] = timestamp;
 }
 io:::done {
 @rq_svc_t[args[1]->dev_statname] = avg(timestamp - iostart[arg0]);
 }
 tick-1s {
 printf("%12s %8s %Y\n", "DEVICE", "ASVC_T", walltimestamp);
 printa("%12s %@8d\n", @rq_svc_t);
 clear(@rq_svc_t);
 } '

Utilization may be measured similar to a profiling: high-resolution timer determines if
server is busy or not, so utilization will be busy ticks to all ticks ratio. Queue length may be
modelled from arrival rate and dispatch rate, but in many cases it is explicitly accessible from
kernel or application data.

Module 3: Principles of dynamic tracing66

Pre- and post-processing
Despite the flexibility of the dynamic tracing languages, it lacks of common tools to create

user-friendly interfaces like command line options to generate different filtering with
predicates, sorting and omitting columns, making scripts are hard to reuse. For example,
iosnoop from DTraceToolkit allows to generate user-printable timestamps or not with -v
option, filter device or PID with -d and -p options, and a series of options that enable or
disable showing various columns.

In such cases we can use general purpose scripting language such as Python, Perl or even
shell-script to generate dynamic tracing on-the fly, run it, read its output in some form and
than print it in human-readable form:

For example, let's add the following capabilities to our open() system call tracer:
customizable per-pid and per-user filters, and also make it universal –- capable running in
DTrace and SystemTap.

Script file scripts/src/opentrace.py

#!/usr/bin/env python

import sys, os, subprocess, platform
from optparse import OptionParser

opentrace.py - Trace open syscalls via SystemTap or DTrace
supports filtering per UID or PID

optparser = OptionParser()

optparser.add_option('-S', '--stap', action='store_true',
 dest='systemtap', help='Run SystemTap')
optparser.add_option('-D', '--dtrace', action='store_true',
 dest='dtrace', help='Run DTrace')
optparser.add_option('-p', '--pid', action='store', type='int',
 dest='pid', default='-1', metavar='PID',
 help='Trace process with specified PID')
optparser.add_option('-u', '--uid', action='store', type='int',
 dest='uid', default='-1', metavar='UID',
 help='Filter traced processes by UID')
optparser.add_option('-c', '--command', action='store', type='string',
 dest='command', metavar='CMD',
 help='Run specified command CMD and trace it')

(opts, args) = optparser.parse_args()

if opts.pid >= 0 and opts.command is not None:
 optparser.error('-p and -c are mutually exclusive')
if (opts.pid >= 0 or opts.command is not None) and opts.uid >= 0:

67Module 3: Principles of dynamic tracing

Konsole
=> check_preempt_wakeup:
 se: curr tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-978205 vruntime: MIN+0
 se: se tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+41023325 vruntime: MIN+-6000000
 CFS_RQ: /
 nr_running: 2 load.weight: 2048 min_vruntime: 314380161884
 runnable_load_avg: 1067 blocked_load_avg: 0
 se: first tsexperiment/6063 SCHED_NORMAL

se: rb: tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+41023325 vruntime: MIN+-6000000
<= check_preempt_wakeup

=> task_tick_fair J=4302675615 queued: 0
 sched_slice: 6000000
 se: curr tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-260001 vruntime: MIN+260001
 delta_exec: 42261531 delta: 6260001
<= task_tick_fair

.py .stp

stap

.py

fiotrace.py
 -t open
 -P PID

probe
syscall.open {
 ...
}

101,1245,open,"/etc/passwd",1
0,1389,open,"/etc/hosts",1
…
0,1811,open,"/root/.bashrc",2

 USER PID OPEN
 myaut 1245 10
 root 1389 31
 root 1811 5

 optparser.error('-p or -c are mutually exclusive with -u')
if opts.systemtap and opts.dtrace:
 optparser.error('-S and -D are mutually exclusive')

if not opts.systemtap and not opts.dtrace:
 # Try to guess based on operating system
 opts.systemtap = sys.platform == 'linux2'
 opts.dtrace = sys.platform == 'sunos5'
if not opts.systemtap and not opts.dtrace:
 optparser.error('DTrace or SystemTap are non-standard for your platform, →
 please specify -S or -D option')

def run_tracer(entry, ret, cond_proc, cond_user, cond_default,
 env_bin_var, env_bin_path,
 opt_pid, opt_command, args, fmt_probe):
 cmdargs = [os.getenv(env_bin_var, env_bin_path)]
 if opts.pid >= 0:
 cmdargs.extend([opt_pid, str(opts.pid)])
 entry['cond'] = ret['cond'] = cond_proc
 elif opts.command is not None:
 cmdargs.extend([opt_command, opts.command])
 entry['cond'] = ret['cond'] = cond_proc
 elif opts.uid >= 0:
 entry['cond'] = ret['cond'] = cond_user % opts.uid
 else:
 entry['cond'] = ret['cond'] = cond_default
 cmdargs.extend(args)

 proc = subprocess.Popen(cmdargs, stdin=subprocess.PIPE)
 proc.stdin.write(fmt_probe % entry)
 proc.stdin.write(fmt_probe % ret)

 proc.stdin.close()
 proc.wait()

if opts.systemtap:
 entry = {'name': 'syscall.open',
 'dump': '''printf("=> uid: %d pid: %d open: %s %d\\n",
 uid(), pid(), filename, gettimeofday_ns());'''}
 ret = {'name': 'syscall.open.return',
 'dump': '''printf(" uid: %%d pid: %%d open: %%s %%lld\\n",
 uid, pid, copyinstr(%s), (long long) timestamp); ''' % fn_arg}
 ret = {'name': 'syscall::%s:return' % sc_name,
 'dump': '''printf("

First half of this script is an option parser implemented with OptionParser Python class
and intended to parse command-line arguments, provide help for them and check their
correctness –- i.e. mutually-exclusive options, etc. Second half of the script is a
run_tracer() function that accepts multiple arguments and if-else statement that
depending on chosen dynamic tracing system, generates parameters for run_tracer() as
follows:

Parameter Description SystemTap DTrace

entry entry probe name and
body

syscall.open syscall::open*:entry or
syscall::openat*:entry
depending on Solaris version

Module 3: Principles of dynamic tracing68

Parameter Description SystemTap DTrace

ret return probe name and
body

syscall.open.return Similiar to entry probe, but with
name return

cond_proc predicate for picking a
process

pid() != target() pid == $target

cond_user predicate template for
per-user tracing

uid() != %d uid == %d

cond_default always-true predicate 0 1

env_bin_var environment option used
to override path to
DTrace/SystemTap binary

STAP_PATH DTRACE_PATH

env_bin_path default path to
DTrace/SystemTap binary

/usr/bin/stap /usr/sbin/dtrace

opt_pid option for tracing tool
accepting PID

-x -p

opt_pid option for tracing tool
accepting new command

-c -c

args arguments to read script
from stdin

- -q -s /dev/fd/0

fmt_probe format string for constructing probes

So this script generate predicate condition uid == 100 for the following command-line:
python opentrace.py -D -u 100

Post-processing is intended to analyse already collected trace file, but it might be run in
parallel with tracing process. However, it allows to defer trace analysis –- i.e. collect
maximum data as we can, and then cut out irrelevant data, showing only useful. This can be
performed using either Python, Perl, or other scripting languages or even use statical analysis
languages like R. Moreover, post-processing allows to reorder or sort tracing output which
can also help to avoid data mixing caused by per-process buffers.

The next script will read opentrace.py output, merge information from entry and return
probes, and convert user-ids and time intervals to a convenient form. Like in dynamic tracing
languages we will use an associative array states which is implemented as dict type in
Python to save data from entry probes and use process ID as a key.

Script file scripts/src/openproc.py

#!/usr/bin/env python

import re
import sys

openproc.py - Collect data from opentrace.py and merge :entry and :return →
 probes

Open trace file or use stdin
try:
 inf = file(sys.argv[1], 'r')
except OSError as ose:
 print ose
 print '''openproc.py [filename]'''

69Module 3: Principles of dynamic tracing

 sys.exit(1)
except IndexError:
 inf = sys.stdin

Convert time to human time
def human_time(ns):
 ns = float(ns)
 for unit in ['ns', 'us', 'ms']:
 if abs(ns) = 0 else 'ERROR %d' % ret

 print 'OPEN %s %d %s => %s [%s]' % (users.get(uid, str(uid)),
 pid, state[pid][1], status,
 human_time(tm - state[pid][0]))
 del state[pid]

If we pipe opentrace.py output to this script, we can get similar data:
python opentrace.py -c 'cat /tmp/not_exists' |
 python openproc.py
 cat: cannot open /tmp/not_exists: No such file or directory
 [...]
 OPEN root 3584 /tmp/not_exists => ERROR -1 [10.17 us]
 [...]

Warning

This is only a demonstration script, and many of their features may be implemented using SystemTap or
DTrace. Moreover, they allow to use system() calls an external program, for example to parse /etc/passwd
and get user name. However, it will cost much more, and if this call will introduce more open() calls (which it
will obviously do), we will get more traced calls and a eternal loop.

Visualization
Reading trace files is exhausting, so the most popular scenario for the post-processing is

visualization. There are multiple standard ways to do that:

• Use GNU Plot as shown here: System utilization graphing with Gnuplot. Tracing script
directly generates commands which are passed to GNU Plot.

• DTrace Chime plugin for the NetBeans
• SystemTap GUI
• Writing you own visualization script. For example, following examples were generated

using Python library matplotlib.

Which types diagrams are mostly useful? Let's find out.

Linear diagram

Module 3: Principles of dynamic tracing70

https://sourceware.org/systemtap/wiki/WSUtilGraphWithGnuplot
http://wiki.netbeans.org/NetBeans_DTrace_GUI_Plugin_1_0
http://stapgui.sourceforge.net/

The simplest one is a linear diagram. X axis in that diagram is the time, so it allows to see
changes in system's behaviour over time. These diagrams may be combined together (but the
time axis should be same on all plots), which allows to reveal correlations between
characteristics, as shown on following image:

These three characteristics are names of the probes from vminfo provider in DTrace: zfod
stands for zero-filled on-demand which is page allocation, while pgpgin and pgpgout are
events related to reading/writing pages to a backing store, such as disk swap partition. In this
case, memeat process (which name is self-explanatory –- it allocates all available RAM)
allocates plenty of memory, so number of zfod events is high, causing to some pages being
read or written to a disk swap.

Tracing a scheduler

Now let's run following loop in a shell which periodically eats lots of CPU than sleeps for 5
seconds:
while :
 do
 for I in {0..4000}
 do
 echo '1' > /dev/null
 done
 sleep 5
 done

And gather scheduler trace: each time it dispatches a new process we will trace process
name, cpu and timestamp:
dtrace -n '
 sched:::on-cpu {
 printf("%d %d %s\n", timestamp,
 cpu, (curthread ==
 curthread->t_cpu->cpu_idle_thread)
 ? "idle"
 : execname); }'

71Module 3: Principles of dynamic tracing

Histograms

In many cases of performance analysis we rely on average values, which are not very
representative.

Information

Consider the following example: you apply to a job in some company which has 100 employees and average
salary is about 30k roubles. This data can have many interpretations:

CEO salary Senior staff salary Junior staff salary

100k roubles 48k roubles 25k roubles

2 million roubles 23k roubles 7k roubles

Would you want to work there if salary is distributed according row? Doubtful. Like with employment, you
cannot rely on average readings in performance analysis: average latency 10ms doesn't mean that all users are
satisfied –- some of them may had to wait seconds for web-page to render.

If we calculate per-process difference between scheduler timestamps and build a
logarithmic histogram plot, we'll see several requests which lasts for seconds:

Y axis is logarithmic and represents a number of observed intervals when CPU was busy
for time period shown on X axis. If we normalize this characteristic, we will get probability
density function.

Warning

Aggregations quantize()/hist_linear() and lquantize()/hist_log() might do the same, but in text
terminal.

Heat maps

Module 3: Principles of dynamic tracing72

When two axes is not enough for your graph, you may also use a colour intensity of each
pixel too. Let's see, how CPU usage is distributed across CPUs. To do so we need pick a step
for the observation interval, say T=100ms, accumulate all intervals when non-idle thread were
on that CPU, say t, than pixel's intensity will be 1.0 - t/T so 1.0 (white) will say that
CPU was idle all the time, while 0.0 (black) will be evidence that CPU is very busy. For our
example, we will see, that CPU 4 is periodically runs CPU-bound tasks:

Gantt charts

Generally speaking, gantt charts help to understand state of the system across the timeline.
For example they are helpful in planning projects: what job needs to be done by whom and
when, so the jobs are placed on X axis while Y axis is a timeline, and color is used to
distinguish teams responsible for jobs. In our case we may be interested in how load
distributed across CPUs, and what's causing it, so we here are a gantt chart:

We added process name to the longest bars, and it seems that bash process causing trouble.
We could discover it before, adding tags on histogram.

73Module 3: Principles of dynamic tracing

Module 4: Operating system kernel
tracing

Process management
Definition

According to Andrew Tanenbaum's book "Modern Operating Systems",

All the runnable software on the computer, sometimes including the operating system, is organized into a
number of sequential processes, or just processes for short. A process is just an instance of an executing
program, including the current values of the program counter, registers, and variables.

Information

Each process has its own address space –- in modern processors it is implemented as a set of pages which map
virtual addresses to a physical memory. When another process has to be executed on CPU, context switch
occurs: after it processor special registers point to a new set of page tables, thus new virtual address space is
used. Virtual address space also contains all binaries and libraries and saved process counter value, so another
process will be executed after context switch. Processes may also have multiple threads. Each thread has
independent state, including program counter and stack, thus threads may be executed in parallel, but they all
threads share same address space.

Process tree in Linux

Processes and threads are implemented through universal task_struct structure (defined
in include/linux/sched.h), so we will refer in our book as tasks. The first thread in
process is called task group leader and all other threads are linked through list node
thread_node and contain pointer group_leader which references task_struct of their
process, that is , the task_struct of task group leader. Children processes refer to parent
process through parent pointer and link through sibling list node. Parent process is linked
with its children using children list head.

Module 4: Operating system kernel tracing74

Relations between task_struct objects are shown in the following picture:

Task which is currently executed on CPU is accessible through current macro which
actually calls function to get task from run-queue of CPU where it is called. To get current
pointer in SystemTap, use task_current(). You can also get pointer to a task_struct
using pid2task() function which accepts PID as its first argument. Task tapset provides
several functions similar for functions used as Probe Context. They all get pointer to a
task_struct as their argument:

• task_pid() and task_tid() –- ID of the process ID (stored in tgid field) and thread
(stored in pid field) respectively. Note that kernel most of the kernel code doesn't check
cached pid and tgid but use namespace wrappers.

• task_parent() –- returns pointer to a parent process, stored in parent/real_parent
fields

• task_state() –- returns state bitmask stored in state, such as TASK_RUNNING (0),
TASK_INTERRUPTIBLE (1), TASK_UNINTTERRUPTIBLE (2). Last 2 values are for sleeping or
waiting tasks –- the difference that only interruptible tasks may receive signals.

• task_execname() –- reads executable name from comm field, which stores base name
of executable path. Note that comm respects symbolic links.

• task_cpu() –- returns CPU to which task belongs

There are several other useful fields in task_struct:

• mm (pointer to struct mm_struct) refers to a address space of a process. For example,
exe_file (pointer to struct file) refers to executable file, while arg_start and
arg_end are addresses of first and last byte of argv passed to a process respectively

• fs (pointer to struct fs_struct) contains filesystem information: path contains
working directory of a task, root contains root directory (alterable using chroot system
call)

• start_time and real_start_time (represented as struct timespec until 3.17,
replaced with u64 nanosecond timestamps) –- monotonic and real start time of a process.

• files (pointer to struct files_struct) contains table of files opened by process
• utime and stime (cputime_t) contain amount of time spent by CPU in userspace and

kernel respectively. They can be accessed through Task Time tapset.

Script dumptask.stp demonstrates how these fields may be useful to get information
about current process.

Script file scripts/stap/dumptask.stp

/**
 * taskdump.stp

75Module 4: Operating system kernel tracing

task_struct
state
flags

mm

stack

parent

children
sibling
tty
fs

comm

group_leader

real_parent
thread_node task_struct

state

mm
sibling

parent
real_parent

task_struct
state

mm
sibling

parent
real_parent

task_struct
state

mm

group_leader
thread_node

 *
 * Prints information about current task once per second
 * Extracts data from `task_struct`
 *
 * Tested on CentOS 7.0
 */

/**
 * Structures `dentry` and `vfsmnt` were separate in older kernels.
 * Newer kernels feature unified `path` structures that contain them both.
 *
 * SystemTap doesn't cache full path, so we have to use function →
 task_dentry_path(),
 * to get entire path in this manner:
 * dentry = @cast(file, "file")->f_path->dentry;
 * vfsmnt = @cast(file, "file")->f_path->mnt;
 * return task_dentry_path(task, dentry, vfsmnt);
 *
 * Unfortunately, SystemTap has bug 16991, fixed in 2.6, so
 * we limit output to a basename
 */
function file_path:string(task:long, file:long) {
 if(@defined(@cast(file, "file")->f_vfsmnt))
 return d_name(@cast(file, "file")->f_dentry);
 return d_name(@cast(file, "file")->f_path->dentry);
}
function task_root_path:string(task:long, fs_ptr:long) {
 if(@defined(@cast(fs_ptr, "fs_struct")->rootmnt))
 return d_name(@cast(fs_ptr, "fs_struct")->root);
 return d_name(@cast(fs_ptr, "fs_struct")->root->dentry);
}
function task_pwd_path:string(task:long, fs_ptr:long) {
 if(@defined(@cast(fs_ptr, "fs_struct")->pwdmnt))
 return d_name(@cast(fs_ptr, "fs_struct")->pwd);
 return d_name(@cast(fs_ptr, "fs_struct")->pwd->dentry);
}

/**
 * Prints exectuable file name from `mm->exe_file` */
function task_exefile(task:long, mm_ptr:long) {
 if(mm_ptr) {
 printf("\texe: %s\n",
 file_path(task, @cast(mm_ptr, "mm_struct")->exe_file));
 }
}
/**
 * Prints root and current dir of a task */
function task_paths(task:long, fs_ptr:long) {
 if(fs_ptr) {
 printf("\troot: %s\n", task_root_path(task, fs_ptr));
 printf("\tcwd: %s\n", task_pwd_path(task, fs_ptr));
 }
}

/**
 * Prints arguments vector. Arguments are copied into process memory (stack)
 * and located in memory area (mm->arg_start; mm_arg_end), of the strings that
 * separated with NULL-terminators, i.e.:

Module 4: Operating system kernel tracing76

 * +-----+----+-------------+----+
 * | cat | \0 | /etc/passwd | \0 |
 * +-----+----+-------------+----+
 * ^ ^
 * arg_start arg_end
 *
 * WARNING: This is only a demostration functions, use cmdline_*() functions
 * instead
 *
 * NOTE: functions user_string* read from current address space
 * To get arguments from other processes, use Embedded C and
 * function that look like proc_pid_cmdline
 */
function task_args(mm_ptr:long) {
 if(mm_ptr) {
 arg_start = @cast(mm_ptr, "mm_struct")->arg_start;
 arg_end = @cast(mm_ptr, "mm_struct")->arg_end;
 if (arg_start != 0 arg_end != 0)
 {
 len = arg_end - arg_start;
 nr = 0;

 /* Pick first argument */
 arg = user_string2(arg_start, "");
 while (len > 0)
 {
 printf("\targ%d: %s\n", nr, arg);
 arg_len = strlen(arg);
 arg_start += arg_len + 1;
 len -= arg_len + 1;
 nr++;

 arg = user_string2(arg_start, "");
 }
 }
 }
}

/**
 * Returns file descriptor using fd
 * NOTE: see pfiles.stp
 */
function task_fd_filp:long(files:long, fd:long) {
 return @cast(files, "files_struct")->fdt->fd[fd];
}

function task_fds(task:long) {
 task_files = @cast(task, "task_struct", "kernel")->files;

 if(task_files) {
 max_fds = task_max_file_handles(task);

 for (fd = 0; fd start_time)) {
 start_time_sec = @cast(task, "task_struct", "kernel")
 ->start_time->tv_sec;
 real_time_sec = @cast(task, "task_struct", "kernel")
 ->real_time->tv_sec;
 printf("\tstart time: %ds\t real start time: %ds\n", start_time_sec, →

77Module 4: Operating system kernel tracing

 real_time_sec);
 }
 else {
 real_time_sec = @cast(task, "task_struct", "kernel")
 ->real_start_time->tv_sec;
 printf("\treal start time: %ds\n", real_time_sec);
 }

}

/**
 * Prints scheduler stats */
function task_time_stats(task:long) {
 user = @cast(task, "task_struct", "kernel")->utime;
 kernel = @cast(task, "task_struct", "kernel")->stime;
 printf("\tuser: %s\t kernel: %s\n", cputime_to_string(user), →
 cputime_to_string(kernel));
}

function dump_task(task:long) {
 task_mm = @cast(task, "task_struct", "kernel")->mm;
 task_fs = @cast(task, "task_struct", "kernel")->fs;

 printf("Task %p is %d@%d %s\n", task, task_pid(task), task_cpu(task), →
 task_execname(task));

 task_exefile(task, task_mm);
 task_paths(task, task_fs);
 task_args(task_mm);
 task_fds(task);
 task_start_time_x(task);
 task_time_stats(task);
}

probe timer.s(1) {
 dump_task(task_current());
}

Process tree in Solaris

Module 4: Operating system kernel tracing78

Solaris Kernel distinguishes threads and processes: on low level all threads represented by
kthread_t, which are presented to userspace as Light-Weight Processes (or LWPs) defined
as klwp_t. One or multiple LWPs constitute a process proc_t. They all have references to
each other, as shown on the following picture:

Current thread is passed as curthread built-in variable to probes. Solaris proc provider
has lwpsinfo_t and psinfo_t providers that extract useful information from
corresponding thread, process and LWP structures.

Description

Process

psinfo_t field proc_t field

p_exec vnode of executable file

p_as process address space

pr_pid In p_pid of type
struct pid

Information about process ID

pr_uid, pr_gid,
pr_euid, pr_egid

In p_cred of type
struct cred

User and group ID of a process

p_stat Process state

pr_dmodel p_model Data model of a process (32- or 64- bits)

pr_start p_user.u_start,
p_mstart

Start time of process, from epoch

pr_fname p_user.u_comm Executable name

p_user.p_cdir vnode of current process directory

p_user.p_rdir vnode of root process directory

79Module 4: Operating system kernel tracing

proc_t
p_exec
p_as

p_pidp

p_child

p_stat
p_tlist

p_parent

p_sibling
p_psibling

u_start
u_comm
u_cdir
u_rdir
u_finfo

p_user

kthread_t
t_link
t_state

t_mstate

t_tid

t_back
t_forw

t_lwp
t_procp

kthread_t
t_link
t_state

t_mstate

t_tid

t_back
t_forw

t_lwp
t_procp

klwp_t
lwp_pcb
lwp_errno

lwp_procp
lwp_thread

klwp_t
lwp_pcb
lwp_errno

lwp_procp
lwp_thread

proc_t
p_exec

p_child
p_parent

p_sibling
p_nsibling

proc_t
p_exec

p_child
p_parent

p_sibling
p_nsibling

Description

For current process –-
fds pseudo-array

p_user.u_finfo Open file table

Thread / LWP

lwpsinfo_t field kthread_t field Description

pr_lwpid t_tid ID of thread/LWP

pr_state (enumeration)
or pr_sname (letter)

t_state State of the thread –- one of SSLEEP for sleeping,
SRUN for runnable thread, SONPROC for thread that is
currently on process, SZOMB for zombie threads,
SSTOP for stopped threads and SWAIT for threads that
are waiting to be runnable.

pr_stype If process is sleeping on synchronization object
identifiable as wait channel (pr_wchan), this field
contains type of that object, i.e.: SOBJ_MUTEX for
mutexes and SOBJ_CV for condition variables

t_mstate micro-state of thread (see also prstat -m)

Parent process has p_child pointer that refers its first child, while list of children is
doubly-linked list with p_sibling pointer (next) and p_psibling (previous) pointers. Each
child contains p_parent pointer and p_ppid process ID which refers his parent. Threads of
the process is also a doubly-linked list with t_forw (next) and t_prev pointers. Thread
references corresponding LWP with t_lwp pointer and its process with t_procp pointer.
LWP refers to a thread through lwp_thread pointer, and to a process through lwp_procp
pointer.

The following script dumps information about current thread and process. Because DTrace
doesn't support loops and conditions, it can read only first 9 files and 9 arguments and does
that by generating multiple probes with preprocessor.

Script file scripts/dtrace/dumptask.d

#!/usr/sbin/dtrace -qCs

/**
 * dumptask.d
 *
 * Prints information about current task once per second
 * Contains macros to extract data from `kthread_t` and its siblings
 * Some parts use standard translators `psinfo_t` and `lwpsinfo_t*`
 *
 * Tested on Solaris 11.2
 */

int argnum;
void* argvec;
string pargs[int];

int fdnum;
uf_entry_t* fdlist;

#define PSINFO(thread) xlate(thread->t_procp)
#define LWPSINFO(thread) xlate(thread)

#define PUSER(thread) thread->t_procp->p_user

Module 4: Operating system kernel tracing80

/**
 * Extract pointer depending on data model: 8 byte for 64-bit
 * programs and 4 bytes for 32-bit programs.
 */
#define DATAMODEL_ILP32 0x00100000
#define GETPTR(proc, array, idx) \
 ((uintptr_t) ((proc->p_model == DATAMODEL_ILP32) \
 ? ((uint32_t*) array)[idx] : ((uint64_t*) array)[idx]))
#define GETPTRSIZE(proc) \
 ((proc->p_model == DATAMODEL_ILP32)? 4 : 8)

#define FILE(list, num) list[num].uf_file
#define CLOCK_TO_MS(clk) (clk) * (`nsec_per_tick / 1000000)

/* Helper to extract vnode path in safe manner */
#define VPATH(vn) \
 ((vn) == NULL || (vn)->v_path == NULL) \
 ? "unknown" : stringof((vn)->v_path)

/* Prints process root - can be not `/` for zones */
#define DUMP_TASK_ROOT(thread) \
 printf("\troot: %s\n", \
 PUSER(thread).u_rdir == NULL \
 ? "/" \
 : VPATH(PUSER(thread).u_rdir));

/* Prints current working directory of a process */
#define DUMP_TASK_CWD(thread) \
 printf("\tcwd: %s\n", \
 VPATH(PUSER(thread).u_cdir));

/* Prints executable file of a process */
#define DUMP_TASK_EXEFILE(thread) \
 printf("\texe: %s\n", \
 VPATH(thread->t_procp->p_exec));

/* Copy up to 9 process arguments. We use `psinfo_t` tapset to get
 number of arguments, and copy pointers to them into `argvec` array,
 and strings into `pargs` array.

 See also kernel function `exec_args()` */
#define COPYARG(t, n) \
 pargs[n] = (n t_procp, argvec, n)) : "???"
#define DUMP_TASK_ARGS_START(thread) \
 printf("\tpsargs: %s\n", PSINFO(thread)->pr_psargs); \
 argnum = PSINFO(thread)->pr_argc; \
 argvec = (PSINFO(thread)->pr_argv != 0) ? \
 copyin(PSINFO(thread)->pr_argv, \
 argnum * GETPTRSIZE(thread->t_procp)) : 0;\
 COPYARG(thread, 0); COPYARG(thread, 1); COPYARG(thread, 2); \
 COPYARG(thread, 3); COPYARG(thread, 4); COPYARG(thread, 5); \
 COPYARG(thread, 6); COPYARG(thread, 7); COPYARG(thread, 8);

/* Prints start time of process */
#define DUMP_TASK_START_TIME(thread) \
 printf("\tstart time: %ums\n", \
 (unsigned long) thread->t_procp->p_mstart / 1000000);

81Module 4: Operating system kernel tracing

/* Processor time used by a process. Only for conformance
 with dumptask.d, it is actually set when process exits */
#define DUMP_TASK_TIME_STATS(thread) \
 printf("\tuser: %ldms\t kernel: %ldms\n", \
 CLOCK_TO_MS(thread->t_procp->p_utime), \
 CLOCK_TO_MS(thread->t_procp->p_stime));

#define DUMP_TASK_FDS_START(thread) \
 fdlist = PUSER(thread).u_finfo.fi_list; \
 fdcnt = 0; \
 fdnum = PUSER(thread).u_finfo.fi_nfiles;

#define DUMP_TASK(thread) \
 printf("Task %p is %d/%d@%d %s\n", thread, \
 PSINFO(thread)->pr_pid, \
 LWPSINFO(thread)->pr_lwpid, \
 LWPSINFO(thread)->pr_onpro, \
 PUSER(thread).u_comm); \
 DUMP_TASK_EXEFILE(thread) \
 DUMP_TASK_ROOT(thread) \
 DUMP_TASK_CWD(thread) \
 DUMP_TASK_ARGS_START(thread) \
 DUMP_TASK_FDS_START(thread) \
 DUMP_TASK_START_TIME(thread) \
 DUMP_TASK_TIME_STATS(thread)

#define _DUMP_ARG_PROBE(probe, argi) \
probe /argi f_vnode)); }
#define DUMP_FILE_PROBE(probe) \
 _DUMP_FILE_PROBE(probe, 0) _DUMP_FILE_PROBE(probe, 1) \
 _DUMP_FILE_PROBE(probe, 2) _DUMP_FILE_PROBE(probe, 3) \
 _DUMP_FILE_PROBE(probe, 4) _DUMP_FILE_PROBE(probe, 5) \
 _DUMP_FILE_PROBE(probe, 6) _DUMP_FILE_PROBE(probe, 7)

BEGIN {
 proc = 0;
 argnum = 0;
 fdnum = 0;
}

tick-1s {
 DUMP_TASK(curthread);
}

DUMP_ARG_PROBE(tick-1s)
DUMP_FILE_PROBE(tick-1s)

Warning

psinfo_t provider features pr_psargs field that contains first 80 characters of process arguments. This script
uses direct extraction of arguments only for demonstration purposes and to be conformant with dumptask.stp.
Like in SystemTap case, this approach doesn't allow to read non-current process arguments.

Module 4: Operating system kernel tracing82

Lifetime of a process

Lifetime of a process and corresponding probes are shown in the following image:

Unlike Windows, in Unix process is spawned in two stages:

• Parent process calls fork() system call. Kernel creates exact copy of a parent process
including address space (which is available in copy-on-write mode) and open files, and gives
it a new PID. If fork() is successful, it will return in the context of two processes (parent
and child), with the same instruction pointer. Following code usually closes files in child,
resets signals, etc.

• Child process calls execve() system call, which replaces address space of a process
with a new one based on binary which is passed to execve() call.

Warning

There is a simpler call, vfork(), which will not cause copying of an address space and make it a bit more
efficient. Linux features universal clone() call which allows to choose which features of a process should be
cloned, but in the end, all these calls are wrappers for do_fork() function.

When child process finishes its job, it will call exit() system call. However, process may
be killed by a kernel due to incorrect condition (like triggering kernel oops) or machine fault.
If parent wants to wait until child process finishes, it will call wait() system call (or
waitid() and similar calls), which will stop parent from executing until child exits. wait()
call also receives process exit code, so only after that corresponding task_struct will be
destroyed. If no process waits on a child, and child is exited, it will be treated as zombie
process. Parent process may be also notified by kernel with SIGCHLD signal.

Processes may be traced with kprocess and scheduler tapsets in SystemTap, or DTrace proc
provider. System calls may be traced with appropriate probes too. Here are some useful
probes:

Action DTrace SystemTap

Process creation proc:::create • kprocess.create
• scheduler.process_fork

83Module 4: Operating system kernel tracing

fork()

exit()

exec()

wait()

SIGCHLD

kprocess.exec
proc:::exec

scheduler.process_fork
kprocess.create
proc:::create

kprocess.start
proc:::start

kprocess.exec_complete
proc:::exec-success
proc:::exec-failure

scheduler.process_free
kprocess.release

scheduler.process_exit
kprocess.exit
proc:::exit

	Introduction
	Foreword
	Typographic conventions
	TSLoad workload generator
	Operating system Kernel

	Module 1: Dynamic tracing tools. dtrace and stap tools
	Tracing
	Dynamic tracing
	DTrace
	SystemTap
	Safety and errors
	Stability

	Module 2: Dynamic tracing languages
	Introduction
	Probes
	Arguments
	Context
	Predicates
	Types and Variables
	Pointers
	Strings and Structures
	Exercise 1
	Associative arrays and aggregations
	Time
	Printing and speculations
	Tapsets & translators
	Exercise 2

	Module 3: Principles of dynamic tracing
	Applying tracing
	Dynamic code analysis
	Profiling
	Performance analysis
	Pre- and post-processing
	Vizualization

	Module 4: Operating system kernel tracing
	Process management
	Exercise 3
	Process scheduler
	Virtual Memory
	Exercise 4
	Virtual File System
	Block Input-Output
	Asynchronicity in kernel
	Exercise 5
	Network Stack
	Synchronization primitives
	Interrupt handling and deferred execution

	Module 5: Application tracing
	Userspace process tracing
	Unix C library
	Exercise 6
	Java Virtual Machine
	Non-native languages
	Web applications
	Exercise 7

	Appendix A. Exercise hints and solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7

	Appendix B. Lab setup
	Setting up Operating Systems
	iSCSI
	Web application stack

	Appendix C. Cheatsheet
	Cheatsheet

