
Dynamic Tracing
with DTrace
SystemTap

Sergey Klyaus

Copyright © 2011-2016 Sergey Klyaus

This work is licensed under the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 License. To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 559
Nathan Abbott Way, Stanford, California 94305, USA.

https://creativecommons.org/licenses/by-nc-sa/3.0/

Table of contents

7Introduction
 . 7Foreword

 . 9Typographic conventions
 . 12TSLoad workload generator

 . 14Operating system Kernel

15Module 1: Dynamic tracing tools. dtrace and stap tools
 . 15Tracing

 . 16Dynamic tracing
 . 17DTrace

 . 19SystemTap
 . 22Safety and errors

 . 23Stability

25Module 2: Dynamic tracing languages
 . 25Introduction

 . 27Probes
 . 33Arguments

 . 34Context
 . 35Predicates

 . 37Types and Variables
 . 40Pointers

 . 43Strings and Structures
 . 44Exercise 1

 . 44Associative arrays and aggregations
 . 48Time

 . 48Printing and speculations
 . 50Tapsets translators

 . 52Exercise 2

54Module 3: Principles of dynamic tracing
 . 54Applying tracing

 . 55Dynamic code analysis
 . 61Profiling

 . 65Performance analysis
 . 66Pre- and post-processing

 . 70Vizualization

74Module 4: Operating system kernel tracing
 . 74Process management

3

 . 86Exercise 3
 . 87Process scheduler

 . 105Virtual Memory
 . 116Exercise 4

 . 116Virtual File System
 . 122Block Input-Output

 . 131Asynchronicity in kernel
 . 132Exercise 5

 . 134Network Stack
 . 138Synchronization primitives

 . 143Interrupt handling and deferred execution

146Module 5: Application tracing
 . 146Userspace process tracing

 . 149Unix C library
 . 152Exercise 6

 . 153Java Virtual Machine
 . 160Non-native languages

 . 165Web applications
 . 172Exercise 7

173Appendix A. Exercise hints and solutions
 . 173Exercise 1
 . 175Exercise 2
 . 176Exercise 3
 . 184Exercise 4
 . 187Exercise 5
 . 190Exercise 6
 . 191Exercise 7

193Appendix B. Lab setup
 . 193Setting up Operating Systems

 . 194iSCSI
 . 195Web application stack

200Appendix C. Cheatsheet
 . 200Cheatsheet

4

SystemTap example scripts

 . 47scripts/stap/wstat.stp
 . 51scripts/stap/tapset/lstat.stp

 . 52scripts/stap/lstat.stp
 . 58scripts/stap/callgraph.stp
 . 75scripts/stap/dumptask.stp

 . 84scripts/stap/proc.stp
 . 100scripts/stap/cfstrace.stp

 . 113scripts/stap/pagefault.stp
 . 128scripts/stap/scsitrace.stp
 . 141scripts/stap/wqtrace.stp
 . 150scripts/stap/pthread.stp
 . 155scripts/stap/hotspot.stp

 . 162scripts/stap/pymalloc.stp
 . 165scripts/stap/pycode.stp

 . 169scripts/stap/web.stp
 . 174scripts/stap/opentrace.stp
 . 176scripts/stap/openaggr.stp

 . 176scripts/stap/dumptask-lab3.stp
 . 182scripts/stap/forktime.stp

 . 184scripts/stap/pfstat.stp
 . 187scripts/stap/kmemstat.stp

 . 187scripts/stap/deblock.stp
 . 188scripts/stap/readahead.stp

 . 191scripts/stap/mtxtime.stp
 . 191scripts/stap/topphp.stp

DTrace example scripts

 . 47scripts/dtrace/wstat.d
 . 50scripts/dtrace/stat.d

 . 60scripts/dtrace/callgraph.d
 . 80scripts/dtrace/dumptask.d

 . 85scripts/dtrace/proc.d
 . 91scripts/dtrace/tstrace.d

 . 110scripts/dtrace/pagefault.d
 . 125scripts/dtrace/sdtrace.d
 . 143scripts/dtrace/cvtrace.d
 . 151scripts/dtrace/pthread.d
 . 155scripts/dtrace/hotspot.d

 . 162scripts/dtrace/pymalloc.d
 . 164scripts/dtrace/pycode.d

 . 171scripts/dtrace/web.d

5

 . 174scripts/dtrace/opentrace.d
 . 175scripts/dtrace/openaggr.d

 . 179scripts/dtrace/dumptask-lab3.d
 . 183scripts/dtrace/forktime.d

 . 185scripts/dtrace/pfstat.d
 . 186scripts/dtrace/kmemstat.d

 . 189scripts/dtrace/deblock.d
 . 189scripts/dtrace/readahead.d
 . 190scripts/dtrace/mtxtime.d

 . 192scripts/dtrace/topphp.d

Other source files

 . 12book/intro/experiment.json
 . 67scripts/src/opentrace.py

 . 69scripts/src/openproc.py
 . 86scripts/src/lab3.c

 . 94experiments/duality/experiment.json
 . 96experiments/concurrency/experiment.json

 . 154scripts/src/java/Greeting.java
 . 154scripts/src/java/GreetingThread.java

 . 154scripts/src/java/Greeter.java
 . 159scripts/src/jsdt/Greeting.java

 . 159scripts/src/jsdt/GreetingProvider.java
 . 159scripts/src/jsdt/JSDT.java

 . 163scripts/dtrace/pycode.h

6

Introduction

Foreword
While I was working on my bachelor thesis, I discovered that code analysis task is a key

step on the path towards solving software problems: aborts and coredumps, excessive (or
unreasonably small) resource consumptions, etc. It was devoted to microkernel architecture,
and when I found it inadequately documented, I had to dive deep down to their sources.

After that, I started to apply code reading on my work, because sources always have most
actual and full information than user documentation. Sources better explain origin of an error
than documentation. For example, take a look at UFS documentation for Solaris 10:

-b bsize The logical block size of the file system in bytes, either 4096 or 8192. The default is 8192. The
sun4u architecture does not support the 4096 block size.

Real condition that describes block size limits in UFS is a bit more complex:
928 if (fsp->fs_bsize > MAXBSIZE || fsp->fs_frag > MAXFRAG ||
 929 fsp->fs_bsize fs_bsize

So, more accurate condition that applies to all architectures may be described as: block size
should be greater or equal page size, but not exceed 8192 bytes (MAXBSIZE macro) and also
be larger than superblock. I have to admit, that sometimes I was too hasty to look into code
and ignored clues that documentation provides, but in most cases source code analysis
approach paid off, especially in hard ones.

Information extraction from source code alone is called static code analysis. This method is
not sufficient, because you cannot look into source of highly-universal system like Linux
Kernel without having in mind what requests it will process. Otherwise, we would have to
process all code branches, but that dramatically increases complexity of code analysis.
Because of that, you have to run experiments sometimes and perform dynamic code analysis.
Through dynamic analysis you will cut out unused code paths and improve your
understanding of a program.

While I was working on my thesis, I used Bochs simulator which can generated giant
traces: one line per assembly instructions. Fortunately, modern operating systems have much
more flexible tools: dynamic instrumentation tools, and that is the topic of this book.

I wrote first useful DTrace script for the request in which customer encountered the
following panic:

7Introduction

http://docs.oracle.com/cd/E23823_01/html/816-5166/newfs-1m.html

unix: [ID 428783 kern.notice] vn_rele: vnode ref count 0

As you can see from the message, reference counter decreases one more time (for example,
if you closed file twice). Of course, if you call close() twice, that won't cause system panic,
so we have to deal with more specific race condition or a simple bug when vn_rele() is
called twice. To unveil that issue, I had to write DTrace script, that traced close() and
vn_rele() calls (and also some socket stuff).

While I was getting familiar with Linux Kernel, I used DTrace competitor from Linux
World –- SystemTap. I began preparation of small workshop about DTrace and SystemTap in
2011, but I decided to add comments to each slide for my workshop. The amount of
comments was growing: I prepared introduction, chapter about script languages in DTrace
and SystemTap and description of process management in Linux and Solaris with dumptask
scripts. But amount of time that I spend to prepare "process management" topic had scared
me, and I decided that I couldn't write all topics about OS kernel architecture that I planned in
the beginning, so I stopped writing this book.

I returned to it in 2013. At the time, I was actively deconstructing CFS scheduler in Linux,
so it made easier to write next architecture topic: "process scheduler". I had some experience
with ZFS internals, so writing topics about block input-output was easy too. Eventually, I got
interest in web application performance –- that gave ground to fifth chapter of this book. In
the end of 2013 draft of this book was prepared. Unfortunately, editing took more than year,
and another year –- translation.

Two specialists in the area of Solaris internals and DTrace: Jim Mauro and Brendan Gregg,
had published a book "DTrace Dynamic Tracing in Oracle® Solaris, Mac OS X, and
FreeBSD" in 2011. It has huge volume (more than thousand pages), and excellent description
of basic performance and computer architecture principles and how they reflected in DTrace
tracing capabilities. That book has a lot of one-liners that can be copied to the terminal and
start collecting data immediately. In our book we will concentrate our efforts in diving into
applications and kernel code and how it can be traced.

Book goals changed while it was written too that lead to inconsistencies. Originally it was
just with comments, I put everything looking like documentation as a links, but modules 4
and 5 have tables with probe names and its arguments. While book was written, SystemTap
was rapidly growing, Linux kernel is changing fast and Solaris became proprietary so it is
hard to maintain example compatibilities for several versions simultaneously. I've updated
examples for CentOS 7 and Solaris 11.2, but it'll probably break compatibility with older
versions.

Send me your feedback to myautneko+dtrace_stap@gmail.com.

Acknowledgements

I want to thank my advisor, Boris Timchenko, who gave me direction in the world of
Computer Science and whose influence was probably highest motivation to write this book.
He is probably first man who said word trace in my life. Thanks to Sergey Klimenkov and
Dmitry Sheshukov, my former supervisors at Tune-IT who were very supportive during
preparation of that book. It will also won't happen without Tune-IT demo equipment which
were used to try examples and lab assignments. Sergey is also an expert in Solaris
architecture, he is teaching Solaris Internals at Tune-IT education centre, and I was one of his
students there.

Introduction8

http://www.tune-it.ru/en

Thanks DTrace SystemTap community for creating such great instruments, especially
Brendan Gregg, who is first man who tamed power of these tools. Nan Xiao is a great person
who edited this book.

And finally, this book won't happen without my parents, who inspired my to always learn
new.

Typographic conventions
This is a book published on the web and so it doesn't have any "typography", but certain

parts of text are decorated with certain styles, thus we describe them in this section of the
book.

Meaning Example

First appearance of new terms Central processing unit (CPU) executes program code.

Multiple terms linked with each other CPU consists of execution units, cache and memory
controller.

Definition of a term Definition

According to this book,

A central processing unit (CPU) executes program
code.

Additional information about OS or
hardware internals

Information

Do not read me if you already know me the answer

Notes and some additional information Note

I am note and I am providing external information about the
implementation

Warning

I will warn you about some implementation quirks

Information that some of the examples or
code in the section is not suitable for
production use

DANGER!

Never try to do rm -rf / on your home computer.

Function name, or name of the probe, any
other entity that exist in source code

If you want to print a line on standard output in pure C, use
puts()

Chunk of the code that has to be used or
command to be executed

int main() {
 puts("Hello, world");
}

$ perl -se '
 print "Hello, $who" . "\n"
 ' -- -who=world

Placeholders in program examples are
covered in italic

puts(output-string)

9Introduction

Meaning Example

Large portions of example outputs may have
some output outlined with bold:

$ gcc hello.c -o hello
$./hello
Hello, world

Large program listing (if you want to show
it, press on "+" button)

Script file scripts/src/hellouser.py

import os
print "Hello, " + os.getenv('LOGNAME', 'anonymous') + '!'

Structural diagrams

Many kernel-related topics will contain structural diagrams which will represent kernel data
structures like this:

In this example two instances of mblk_t structure (which is typedef alias) are shown which
are linked together through pair of mblk_t pointers b_next and b_prev. Not all fields are
shown on this diagram, types are omitted, while order of fields may not match real one.
Following conventions are used in this type of diagrams:

Example code Diagram and explanation

struct structB {
 int field10;
 char field20;
};
struct structA {
 struct structB* bp;
 int field1;
}; structure structA points to instance of structB

struct structA;
struct structB {
 int field10;
 struct structA* ap;
};
struct structA {
 struct structB* bp;
 int field1;
};

structure structB contains backward pointer to structure
structA

struct structA {
 struct structB* bp;
 int field1;
 struct {
 char c1;
 char c2;
 } cobj;
};

structure structA has embedded structure (not neccessarily to be
anonymous)

Introduction10

b_next
b_prev

b_datap

mblk_t

b_rptr
b_wptr

b_next
b_prev

b_datap

mblk_t

b_rptr
b_wptr

structA
bp

field1
structB

field10
field20

structA
bp

field1
structB

field10
ap

structA
bp

field1

cobj
c1
c2

Example code Diagram and explanation

struct structB {
 int field10;
 char field20;
};
struct structA {
 struct structB* bp;
 int field1;
};

structure structA points to a dynamic array of structures
structB

struct structB {
 int field10;
 char field20;
 struct list_head node;
};
struct structA {
 struct list_head blist;
 int field1;
};

structure structA contains head of linked list of structB
instances
Various structure relations can be shown with this type of arrows:

• Single solid glyph shows node-to-node relations in linked list
• Double solid glyphs shows head-to-node relations in linked

list
• Double dashed glyphs shows various tree-like relations like

RB tree in Linux

Timeline diagrams

Timeline diagrams are used to show various processes that exist in traced system and chain
of events or operations happening with them and at the same time contains names of probes:

This diagram should be read like this:

• Thick colored arrows represent flow of some processes –- usually they are threads or
processes in a system. Gray arrows represent processes that are inactive for some reason
(usually, blocked and thus cannot be executed on CPU). Arrows corresponding to the same

11Introduction

structA
bp

field1
structB

field10
field20
field10
field20

...

structA
blist
field1

structB
field10

field20
node

structB
field10

field20
node

puts("Hi, Frank\n");

write(0, "Hi, Frank\n", 10);

getc(stdin);

Konsole
=> check_preempt_wakeup:
 se: curr tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-978205 vruntime: MIN+0
 se: se tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+41023325 vruntime: MIN+-6000000
 CFS_RQ: /
 nr_running: 2 load.weight: 2048 min_vruntime: 314380161884
 runnable_load_avg: 1067 blocked_load_avg: 0
 se: first tsexperiment/6063 SCHED_NORMAL
 se: rb: tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+41023325 vruntime: MIN+-6000000
<= check_preempt_wakeup

=> task_tick_fair J=4302675615 queued: 0
 sched_slice: 6000000
 se: curr tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-260001 vruntime: MIN+260001
 delta_exec: 42261531 delta: 6260001
<= task_tick_fair

user presses any key stdio.getc_done
stdio:::getc-done

stdio.getc_start
stdio:::getc-start

stdio.puts
stdio:::puts

H i , F r \na n k

process share same baseline.
• Thin black arrows demonstrate transfer of control between several operations. In this

example puts() call triggers write system call. Some of them may be omitted.
• Thin colored lines demonstrate subsequent chain of events unrelated to the process. In

this example phrase Hi, Frank arrives in Konsole window (graphic terminal).
• Text in dashed rectangles contains name of SystemTap and DTrace probes corresponding

to the operations or events happening with the process.

Virtual time axis beginning at the top and it is vertical.

DANGER!

Probes shown in this example are purely fictional.

TSLoad workload generator
During this course we will need to demonstrate created scripts on a real system. We will use

version 0.2 of TSLoad workload generator to do so. Its documentation and source code are
available on GitHub.

Experiment configuration files are kept in JSON format: each experiment starts with
directory with experiment.json file in it (it can also be accompanied by traces and
timeseries). This file contains description of threadpools and workloads: their types and
parameters.

Script file book/intro/experiment.json

{ "name": "jump_table",
 "steps": {
 "jt": {
 "num_steps": 100,
 "num_requests": 2000 }
 },
 "threadpools": {
 "tp_jt" : {
 "num_threads": 24,
 "quantum": 2000000000,
 "disp": { "type": "round-robin" } }
 },
 "workloads" : {
 "jt" : {
 "wltype": "jt",
 "threadpool": "tp_jt",
 "params": {
 "num_request_types": 5000,
 "request_type": {
 "randgen": { "class": "lcg" } },
 "is_incorrect": {
 "randgen": { "class": "lcg" },
 "pmap": [
 { "probability": 0.2, "value": true },
 { "probability": 0.8, "value": false }
] } },
 "rqsched": {
 "type": "iat",
 "distribution": "exponential"
 }

Introduction12

http://myaut.github.io/tsload/
https://github.com/myaut/tsload

 }
 }
}

For example, defines an experiment called jump_table. workloads section defines
workload jt which type is also jt. That workload have the following parameters:

• num_request_types - set globally for entire workload - number of "request types" that
will be generated;

• request_types - generated for each request with linear congruential PRNG;
• is_incorrect - boolean value which will be set to true for 20% requests.

It also defines request scheduler –- inter arrival time will be generated using exponential
distribution. steps section defines number of requests which will be generated for this
workload: 100 steps with 2000 requests in each.

threadpools section defines threadpools which will perform our workloads. It defines pool
tp_jt which contains 24 threads with step period set to 2 second (as paramter quantum sets
in nanoseconds). Threadpool dispatcher describes how requests will be distributed across
threads and it is set to round-robin.

If we try to draw a timing diagram of the requests generated by this configuration file we
will get something like .

jt workload type is defined in a separate loadable module which contains code for
simulating requests. During our book we meet similar modules in exercises: proc_starter
which forks processes, file_opener which randomly opens files and other modules.

Experiment is started with tseexperiment command:
tsexperiment -e /path/to/experiment run

In this command /path/to/experiment is a directory which contains file
experiment.json. That directory will also contain experiment results which can be listed
with list subcommand of tseexperiment:
tsexperiment -e /path/to/experiment list

Results may be exported to CSV format with export subcommand or some statistics may
be shown with report subcommand.

It is not necessary to edit configuration file each time parameter have to be altered: run
subcommand has -s option. To provide its argument, check flattened names of configuration
parameters with -l option of subcommand show:
tsexperiment -e /opt/tsload/var/tsload/mbench/jt show -l
name=jump_table
steps:jt:num_steps=100
steps:jt:num_requests=2000
...

13Introduction

Thread #1

Thread #2

Thread #24request_type =
 0x46B72F89DBAF20F
is_incorrect = false

#24

request_type =
 0x65F9CE5EF1973DF
is_incorrect = false

#2 request_type =
 0x97CAA3A9F27B80
is_incorrect = true

#26

request_type =
 0x1124385DC1576B5
is_incorrect = true

#1 request_type =
 0x76F3AB6CD219F84
is_incorrect = false

#25

...

Inter-arrival time
(distributed exponentially)

So, to change number of per-step requests to 500, you should call tsexperiment with
following options:
tsexperiment -e /opt/tsload/var/tsload/mbench/jt run \
 -s steps:jt:num_requests=500

In some cases we will need to use hardware device names in experiment configuration, i.e.
to bind threads to CPU cores. To get their names, run tshostinfo command:
tshostinfo -x

Operating System Kernel
Definition

According to Wikipedia, Operating System Kernel is

a computer program that manages I/O (input/output) requests from software, and translates them into data
processing instructions for the central processing unit and other electron components of a computer. The
kernel is a fundamental part of a modern computer's operating system.

We will refer to operating system kernel as kernel in the rest of the book. Applications are
using system call mechanism to access various kernel functions, and by doing that they
transfer control to kernel routines. The current state of application including all variables and
current program counter is called context. C is a programming language which is vastly used
for writing Unix-like operating systems kernels such as Solaris, FreeBSD and Linux. C
supports only procedural programming, but kernel developers adopted object-oriented and
even functional programming.

Where can we get information on kernel? Like I said, the most reliable source of such
information is source codes which contain comments. You can use cross-reference tools to
navigate source codes as easy as click a hyperlink. Some of them are publicly available: like
lxr.linux.no which contains Linux source and src.illumos.org which contains sources for
Illumos (FOSS fork of OpenSolaris) in project illumos-gate. You can create your own
cross-reference with OpenGrok tool: https://github.com/OpenGrok/OpenGrok.

Of course we have to mention textual sources of information. For Linux it is:

• Documentation/ directory in kernel sources
• Linux Kernel Mailing List
• Linux info from source
• Robert Love book "Linux Kernel Development"
• Linux Device Drivers Book

Some sources about Solaris:

• solaris.java.net –- remnants of old OpenSolaris site
• Richard McDougall and Jim Mauro book "Solaris(TM) Internals: Solaris 10 and

OpenSolaris Kernel Architecture"
• Oracle course "Solaris 10 Operating System Internals"

Warning

Solaris sources was closed after Oracle acquisition of Sun in 2009 and some information on Solaris may be
outdated.

Introduction14

http://en.wikipedia.org/wiki/Kernel_%28operating_system%29
http://lxr.linux.no/
http://src.illumos.org/
https://github.com/OpenGrok/OpenGrok
http://lkml.org/
http://lwn.net/
https://lwn.net/Kernel/LDD3/
http://solaris.java.net/

Module 1: Dynamic tracing tools.
dtrace and stap tools

Tracing
Operating system and application are crucial parts of a computer system, but due to their

colossal complexity, there are situations related to software bugs, incorrect system setup that
lead to incorrect behavior. To address these issues, system administrator should perform
instrumentation which depends on the issue arisen: it could be performance statistics
collection and their analysis, debug or system audit. Two common approaches to
instrumentation are sampling when you collect state of the system: values of some variables,
stacks of threads, etc. at unspecified moments of time and tracing when you install probes at
specified places of software. Profiling is a most famous example of sampling.

Sampling is very helpful when you do not know where issue happens, but it hardly help
when you try to know why it happened. I.e. profiling revealed that some function, say foo()
that processes lists of elements, consumes 80% of the time, but doesn't say why: whether
some lists are too long, or they should be pre-sorted, or list is inappropriate data structure for
foo(), or whatever. With tracing we can install a probe to that function, gather information
on lists (say their length) and collect cumulative execution of function foo(), and then
cross-reference them, searching for a pattern in lists whose processing costs too much CPU
time.

Over time operating system kernels have grown different methods of tracing. First one and
a simplest one is counters –- each time probe fires (say, major page fault), they increase
some counter. Counters may be read through kstat interface in Solaris:
kstat -p |grep maj_fault
 cpu:0:vm:maj_fault 7588

Linux usually provides counters through procfs or sysfs:
cat /proc/vmstat | grep pgmajfault
 pgmajfault 489268

This approach is limited: you can't add counter for every event without losing performance,
and they are usually system-wide (i.e. you can't know what process causing major-faults), or
process/thread-wide.

15Module 1: Dynamic tracing tools. dtrace and stap tools

More complex approach is debug printing: add a printk() or cmn_err() statement as a
probe, but this approach is quite limited, because you need recompile kernel each time you
need new set of probes. But if all debug printing will be enabled, you will get excessive
system load. By default, most of debug printing in Solaris are disabled unless you compile a
DEBUG-build, which is not publicly available. Modern Linux kernels however developed a
dynamic debugging facility available via pr_debug(). There are several static probes which
are deactivated on systems start, but can be activated externally: ftrace and kprobes in Linux
and TNF on Solaris, but amount of information provided by them is still limited, and
ftrace/kprobes are requiring writing kernel modules which is not convenient and dangerous.

So, generally speaking, that approaches provide very limited set of data at very limited set
of tracing points. The only approach that widens that limits is kernel debugger, but because
each breakpoint halts system, it cannot be used on production systems. The answer to them
are dynamic tracing which is the topic of this book.

Dynamic tracing
Unlike other approaches, dynamic tracing tool embeds tracing code into working user

program or kernel, without need of recompilation or reboot. Since any processor instruction
may be patched, it can virtually access any information you need at any place.

Solaris DTrace development was begun in 1999, and it became part of Solaris 10 release.
Along with other revolutionary Solaris 10 features, it shaken world of operating systems, and
still evolve. You may found more information about DTrace history here: Happy 5th
Birthday, DTrace!.

Here are some DTrace information sources:

• Oracle Wiki
• DTrace at SolarisInternals wiki
• «Solaris Performance and Tools» book
• «DTrace - Dynamic Tracing in Oracle Solaris, Mac OS X and FreeBSD» book
• Solaris Dynamic Tracing Guide

During course we will refer to Solaris Dynamic Tracing Guide with the following sign:

DTrace was open-sourced as a part of OpenSolaris, but due to license incompatibility, it
can't be merged with Linux Kernel. Several ports existed, but they lacked of proper support.
The only stable port is provided in Unbreakable Enterprise Kernel by Oracle for their own
Linux distribution which is not wide-spread. There were attempt to develop another clone of
DTrace –- DProbes, but it was a failure. Over time three major Linux players: Red Hat,
Hitachi, IBM presented dynamic tracing system for Linux called SystemTap. It has two
primary sources of information: SystemTap Language Reference to which we will reference
with icon SystemTap Tapset Reference Manual to which we will reference with icon .
Of course, there is a Unix manual pages, to which we will refer with icon .

SystemTap has to generate native module for each script it runs, which is huge performance
penalty, so as alternative to it, Ktap is developing. Its language syntax shares some features
with SystemTap, but it uses Lua and LuaJIT internally which makes it faster than SystemTap.
Modern kernel versions has eBPF integrated, and there is experiment on using it as a platform
for generating probe code, but it is far from final stage as of kernel version 4.1. Finally, there
is a sysdig which is scriptless. Another implementation of Linux tracing is LTTng. It had
used static tracing and required kernel recompilation until version 2.0, but currently utilizes
ftrace and kprobe subsystems in Linux kernel. As name of the book states, it describes

Module 1: Dynamic tracing tools. dtrace and stap tools16

https://blogs.oracle.com/bmc/entry/happy_5th_birthday_dtrace
https://blogs.oracle.com/bmc/entry/happy_5th_birthday_dtrace
https://wikis.oracle.com/display/DTrace/DTrace
http://www.solarisinternals.com/wiki/index.php/DTrace_Topics
http://download.oracle.com/docs/cd/E19253-01/817-6223/
http://sourceware.org/systemtap/
http://sourceware.org/systemtap/langref/
http://sourceware.org/systemtap/tapsets/
https://github.com/ktap/ktap
http://www.sysdig.org/
http://lttng.org/

SystemTap and DTrace.

Here are the workflow of dynamic tracing systems:

Dynamic tracing system logic is quite simple: you create a script in C-like language which
is translated to a probe code by a compiler. DTrace scripts are written in D (do not
disambiguate with D language from digital mars) have extension .d, while SystemTap scripts
have extension .stp and written in SystemTap Language (it doesn't have special name).
That probe code is loaded into kernel address space by a kernel module and patches current
binary code of kernel. Probes are writing collected data to intermediate buffers that are
usually lock-free, so they have small effect on kernels performance and doesn't need to
switch context to a tracing program. Separate entity called consumer reads that buffers and
writes gathered data into terminal, pipe or to a file.

DTrace
DTrace is shipped with Solaris from version 10, no additional actions needed to install it. It

also doesn't need any changes to kernel code: it relies on CTF sections, symbol tables and
static tracing points that are included into Solaris Kernel binaries.

The heart of DTrace is libdtrace.so.1 library which contains compiler that translates
script in D language to a DTrace Intermediate Format (DIF). That format is machine codes
of simplified RISC which are interpreted by drv/dtrace driver:

17Module 1: Dynamic tracing tools. dtrace and stap tools

.d

Konsole
=> check_preempt_wakeup:
 se: curr tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-978205 vruntime: MIN+0
 se: se tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+41023325 vruntime: MIN+-6000000
 CFS_RQ: /
 nr_running: 2 load.weight: 2048 min_vruntime: 314380161884
 runnable_load_avg: 1067 blocked_load_avg: 0
 se: first tsexperiment/6063 SCHED_NORMAL
 se: rb: tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+41023325 vruntime: MIN+-6000000
<= check_preempt_wakeup

=> task_tick_fair J=4302675615 queued: 0
 sched_slice: 6000000
 se: curr tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-260001 vruntime: MIN+260001
 delta_exec: 42261531 delta: 6260001
<= task_tick_fair

Compiler

Consumer

Front-end tool

Buffers

Probes

KernelUserspace

svc routines
disassembler
module cache

CTF symtab

assembler

parser
lexer

codegen

module

CTF symtab

drv/dtrace

DIF engine

libdtrace.so.1

Kernel

Userspace

dtrace (1M)

DIF

DTrace primary front-end tool is dtrace(1M) which act both as compiler and consumer
and uses libdtrace.so.1 facilities to do that. There are other front-ends: trapstat(1M)
and lockstat(1M), but libdtrace.so.1 APIs are open, so you can create your own front
end for that (i.e. for Java using JNI). We will refer to dtrace(1M) as DTrace further in a
book.

DTrace tool

DTrace supports three launch modes:

• Script is passed as command line argument: # dtrace -n 'syscall::write:entry {
trace(arg0); }'

• Script is located in separate file: # dtrace -s syscalls.d [arguments] In that case
you may pass arguments, for example user ID for traced processes or disk name for which
you trace block input-output. In this case arguments will be accesible in variables $1, $2, ...
$n. Note that because there is no special handling for string arguments, you may need
duplicate quotes (double-quotes needed by DTrace): # dtrace -s syscalls.d
'"mysqld"'

• Explicitly passing name of probe: dtrace [-P provider] [-m module] [-f
function] [-n name]

Here are some useful command line options:

• -l –- lists all available probes. Can be filtered using options -P, -m, -f or -n or using
grep. I.e.:
dtrace -l -P io
ID PROVIDER MODULE FUNCTION NAME
800 io genunix biodone done
801 io genunix biowait wait-done
802 io genunix biowait wait-start

• -q –- enables quiet mode. By default DTrace prints probe id, its name and CPU number
when probe fires. -q disables that.

• -w –- allows destructive actions, for example system panics or breakpointing
applications. That actions may be forbidden globally by setting kernel tunable
dtrace_destructive_disallow.

• -o FILE –- redirects output to a file. If file already exists, it appends to it.
• -x OPTION[=VALUE] –- sets one of DTrace tunables. Here are some useful tunables:

• bufsize –- size of consumer buffer (same as -b). Note that consumer buffers are
per-cpu.

• cpu –- processor on which tracing is enabled (same as -c)
• dynvarsize –- size of buffers for dynamic variables (associative arrays in particular)
• quiet –- quiet mode (same as -q)
• flowindent –- print probes in tree mode with indentation. See more in Dynamic code

analysis.
• destructive –- enables destructive mode (same as -w). These options may be set

inside script using pragma directive: #pragma D option bufsize=64m
• -C –- call C preprocessor cpp(1) before script compilation. That allows handling C

preprocessor directives such as #include, #define, #ifdef and so on. There are some extra
preprocessor-related options:

Module 1: Dynamic tracing tools. dtrace and stap tools18

• -D MACRO[=SUBSTITUTION] –- defines preprocessor macro. -U undefines it.
• -I PATH –- adds a path to include files
• -H –- prints included files

• -A and -a –- enable anonymous tracing which is used to trace system's boot and allows
early loading of drv/dtrace

• -c COMMAND and -p PID –- attaches tracing to a running command or starts new one

DTrace example

Let's create script test.d with following contents:
#!/usr/sbin/dtrace -qs
#pragma D option flowindent
#pragma D option dynvarsize=64m

syscall::write:entry
/pid == $target/
{
 printf("Written %d bytes\n", arg2);
}

Launch it with following options:
root@host# chmod +x /root/test.d
root@host# /root/test.d -c "dd if=/dev/zero of=/dev/null count=1"

Q: One by one, remove options flowindent and -q from script. What changed?

Q: Calculate number of probes that are provided by fbt provider: # dtrace -l -P fbg
| wc -l

References

• dtrace(1M)
• dtrace(1M) Utility
• Options and Tunables

SystemTap
SystemTap is not part of Linux Kernel, so it have to adapt to kernel changes: i.e. sometimes

runtime and code-generator have to adapt to new kernel releases. Also, Linux kernels in most
distributions are stripped which means that debug information in DWARF format or symbol
tables are removed. SystemTap supports DWARF-less tracing, but it has very limited
capabilities, so we need to provide DWARF information to it.

Many distributions have separate packages with debug information: packages with
-debuginfo suffix on RPM-based distributions, packages with -dbg on Debian-based
distributions. They have files that originate from same build the binary came from (it is
crucial for SystemTap because it verifies buildid of kernel), but instead of text and data
sections they contain debug sections. For example, RHEL need kernel-devel,
kernel-debuginfo and kernel-debuginfo-common packages to make SystemTap
working. Recent SystemTap versions have stap-prep tool that automatically install kernel
debuginfo from appropriate repositories with correct versions.

For vanilla kernels you will need to configure CONFIG_DEBUG_INFO option so debug
information will be linked with kernel. You will also need to set CONFIG_KPROBES to allow

19Module 1: Dynamic tracing tools. dtrace and stap tools

http://docs.oracle.com/cd/E26502_01/html/E29031/dtrace-1m.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-dtrace1m/index.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-opt/index.html

SystemTap patching kernel code, CONFIG_RELAY and CONFIG_DEBUG_FS to allow transfer
information between buffers and consumer and CONFIG_MODULES with
CONFIG_MODULE_UNLOAD to provide module facilities. You will also need uncompressed
vmlinux file and kernel sources located in /lib/modules/$(uname -r)/build/.

SystemTap doesn't have VM in-kernel (unlike DTrace and KTap), instead it generates
kernel module source written in C than builds it, so you will also need a compiler toolchain
(make, gcc and ld). Compilation takes five phases: parse, elaborate in which tapsets and
debuginfo is linked with script, translate in which C code is generated, compile and run:

SystemTap uses two sets of libraries during compilation process to provide kernel-version
independent API for accessing. Tapsets are a helpers that are written in SystemTap language
(but some parts may be written in C) and they are plugged during elaborate stage. Runtime is
written in C and used during compile stage. Because of high complexity of preparing source
code and compiling that, SystemTap is slower than a DTrace. To mitigate that issue, it can
cache compiled modules, or even use compile servers.

Unlike DTrace, SystemTap has several front-end tools with different capabilities:

• stapio is a consumer which runs module and prints information from its buffer to a file
or stdout. It is never used directly, but called by stap and staprun tools.

• stap(1) includes all five stages and allow to stop at any of them. I.e. combining options
-k and -p 4 allow you to create pre-compiled .ko kernel module. Note that SystemTap is
very strict about version of kernel it was compiled for.

• staprun(1) allows you to reuse precompiled module, instead of start compilation from
scratch.

Warning

If stap parent is exited, than killall -9 stap won't finish stapio daemon. You have to signal it with
SIGTERM: killall -15 stap

Module 1: Dynamic tracing tools. dtrace and stap tools20

.stp

parse

elaborate

translate

compile

run

.stp.stp.stp.stp.stp.stptapsets

.stp.stp.stp.stp.stp.cruntime

.stp.stp.kodebuginfo

vmlinux

.c

M
akefile

.ko

stap

Like many other scripting tools, SystemTap accepts script as command line option or
external file, for example:

• Command-line script is passed with -e option # stap -e 'probe syscall.write {
printf("%dn", $fd); }' [arguments]

• External file as first argument: # stap syscalls. [arguments] SystemTap command
line arguments may be passed to a script, but it distingushes their types: numerical arguments
are accessible with $ prefix: $1, $2 ... $n while string arguments have @ prefix: @1, @2 ...
@n

Here are some useful stap(1) options:

• -l PROBESPEC accepts probe specifier without probe keyword (but with wildcards) and
prints all matching probe names (more on wildcards in Probes). -L will also print probe
arguments and their types. For example: # stap -l 'scsi.*'

• -v –- increases verbosity of SystemTap. The more letters you passed, the more
diagnostic information will be printed. If only one -v was passed, stap will report only
finishing of each stage.

• -p STAGE –- ends stap process after STAGE, represented with a number starting with 1
(parse).

• -k –- stap tool won't delete SystemTap temporary files created during compilation
(sources and kernel modules kept in /tmp/stapXXXX directory),

• -g –- enables Guru-mode, that allows to bind to blacklisted probes and write into kernel
memory along with using Embedded C in your scripts. Generally speaking, it allows
dangerous actions.

• -c COMMAND and -x PID –- like those in DTrace, they allow to bind SystemTap to a
specific process

• -o FILE –- redirects output to a file. If it already exists, SystemTap rewrites it.
• -m NAME –- when compiling a module, give it meaningful name instead of stap_.

When SystemTap needs to resolve address into a symbol (for example, instruction pointer
to a corresponding function name), it doesn't look into libraries or kernel modules. Here are
some useful command-line options that enable that:

• -d MODULEPATH –- enables symbol resolving for a specific library or kernel module.
Note that in case it is not provided, stap will print a warning with corresponding -d option.

• --ldd –- for tracing process –- use ldd to add all linked libraries for a resolving.
• --all-modules –- enable resolving for all kernel modules

SystemTap example

Here is sample SystemTap script:
#!/usr/sbin/stap

probe syscall.write
{
 if(pid() == target())
 printf("Written %d bytes", $count);
}

Save it to test.stp and run like this:
root@host# stap /root/test.stp -c "dd if=/dev/zero of=/dev/null count=1"

21Module 1: Dynamic tracing tools. dtrace and stap tools

Q: Run SystemTap with following options: # stap -vv -k -p4 /root/test.stp , find
generated directory in /tmp and look into created C source.

Q: Calculate number of probes in a syscall provider and number of variables provided by
syscall.write probe:
stap -l 'syscall.*' | wc -l
stap -L 'syscall.write'

References

• STAP
• STAPRUN
• The stap command
• Literals passed in from the stap command line

Safety and errors
Like we said, dynamic tracing is intended to be safely used in production systems, but since

it is intrusive to an OS kernel, there is a room for unsafe actions:

• Fatal actions inside kernel like reading from invalid pointer (like NULL) or division by
zero will cause a panic following by a reboot.

• If probes are executed for too much time (or too often), it will induce performance
degradation in a production system, or at least give results that are very different than from a
non-traced system (i.e. making racing condition that you debug a very rare).

• Dynamic tracing systems allocate memory for their internal memory which should be
limited.

That leads to a common principle for all dynamic tracing systems: add some checks before
executing actual tracing. For example, DTrace has Deadman Mechanism that detects
system unresponsiveness induced by DTrace and aborts tracing, while SystemTap monitors
time spent in each tracing probe. The common error messages you'll see due to that are
processing aborted: Abort due to systemic unresponsiveness in DTrace and
SystemTap probe overhead exceeded threshold.

Unfortunately, SystemTap is not that affective as DTrace, so probe overhead error message
is a common thing. To overcome this error in SystemTap you can recompile your script with
-t option to see what probes are causing overload and try to optimize them. You may also
increase threshold by setting compile macro (with -D option) STP_OVERLOAD_THRESHOLD in
percent of overall CPU time or completely disable it with STP_NO_OVERLOAD macro (latest
SystemTap versions support it via -g --suppress-time-limits).

Another resource that is limited is memory. Memory limitations are implemented pretty
simple: all allocations should be performed when script is launched and with a fixed size. For
associative arrays, SystemTap limits number of entries it can hold (changeable by setting
macro MAXMAPENTRIES), and ERROR: Array overflow, check MAXMAPENTRIES near
identifier 't' at :1:30, while DTrace limits overall space for them via dynvarsize
tunable and it will print it as dynamic variable drops error. Note that SystemTap still can
exhaust memory if you create too many associative arrays, but this will be handled by OOM
which will simply kill stap tool. Both DTrace and SystemTap limit size of strings used in
scripts.

Transport buffer between probes and consumer is also limited, so if you will print in probes
faster than consumer can take, you will see There were NN transport failures error in

Module 1: Dynamic tracing tools. dtrace and stap tools22

https://sourceware.org/systemtap/man/stap.1.html
https://sourceware.org/systemtap/man/staprun.8.html
https://sourceware.org/systemtap/langref/SystemTap_overview.html#SECTION00025000000000000000
https://sourceware.org/systemtap/langref/Language_elements.html#SECTION00067000000000000000

SystemTap or DTrace drops on CPU X error on DTrace. The answer to that problem is
simple: be less verbose, take data from buffer more frequently (regulated by cleanrate
tunable in DTrace) or increase buffer size (-b option and bufsize tunable in DTrace and
-s option in SystemTap).

Both DTrace and SystemTap are also using special handlers for in-kernel pagefaults, that
will disable panic and handle fault if it was caused by tracing. For example DTrace will
complain with error on enabled probe ID 1 (ID 78: syscall::read:entry):
invalid alignment (0x197) in action #1 at DIF offset 24 and continue execution,
while SystemTap will print ERROR: read fault [man error::fault] at
0x00000000000024a8 (addr) near operator '@cast' at :1:45 and stop tracing. Note
that SystemTap provides more context than DTrace. That is because error-checking is
performed in generated C code, not by RISC-VM inside driver.

Demonstration scripts

These scripts have errors which cause error messages described above. For associative
arrays we will use timestamp to flood array with unrepeated data:
dtrace -n 'int t[int];
 tick-1ms {
 t[timestamp] = timestamp }'
stap -e 'global t;
 probe timer.ms(1) {
 t[local_clock_ns()] = local_clock_ns(); }'

To demonstrate segmentation violation, you can interpret wrong integral argument (fd for
Solaris and file position in Linux) as pointer to a thread structure and try to access its field.
dtrace -n 'syscall::read:entry {
 trace(((kthread_t*) arg0)->t_procp); }' -c 'cat /etc/passwd'
stap -e 'probe kernel.function("vfs_read") {
 println(@cast($count, "task_struct")->pid); }' -c "cat /etc/passwd"

References

• Safety and security
• Performance Considerations
• SystemTap Wiki: Exhausted resources

Stability
Another problem to which dynamic tracing systems face is stability of in-kernel interfaces.

While system calls never change their interface due to backwards compatibility (if something
need to be changed, new system call is introduced†), internal kernel function often do that
especially if they not a public API for a drivers. Dynamic tracing languages provide
mechanisms to avoid direct use of in-kernel interface by hiding them in abstractions:

Stability Data access

DTrace SystemTap

High translators, i.e. fileinfo_t tapset variables

Lowest Global variables and raw
arguments like args[0] or
(struct_t*) arg0

Raw arguments like $task or
@cast($task, "task_struct")

23Module 1: Dynamic tracing tools. dtrace and stap tools

https://sourceware.org/systemtap/langref/SystemTap_overview.html#SECTION00026000000000000000
http://docs.oracle.com/cd/E19253-01/817-6223/chp-perf/index.html
http://sourceware.org/systemtap/wiki/TipExhaustedResourceErrors

Stability Tracepoints

DTrace SystemTap

High statically defined tracing
providers (like io and many
others)

tapset aliases, i.e. vm.kfree

Mediocre static tracepoints with sdt
provider

statically defined ftrace probes like
kernel.trace("kfree")

Lowest fbt and pid$$ providers DWARF probes like
kernel.function("kfree")

To achieve maximum script portability, you should pick highest stability options wherever
possible. Downside of that approach is that it provides fewer information than you could
access with other approaches. These options will be described in Translators and tapsets
section of next module.

Linux kernel is changing faster: it has stable releases each 2-3 months, and moreover, its
builds are configurable, so some features present in one kernel may be disabled in another
and vice versa which makes stability is much more fragile. To overcome that, SystemTap
Language has conditional compilation statements which like in C allow to disable certain
paths in code. Simplest conditional compilation statements are @defined which evaluates to
true if variable passed to it is present in debug information and @choose_defined which
chooses from several variables. It also support ternary conditional expression:
%(kernel_v >= "2.6.30"
 %? count = kernel_long($cnt)
 %: count = $cnt
 %)

Here, kernel_v is numerical version of kernel without suffix (for version with suffix, use
kernel_vr). SystemTap also defines arch variable and CONFIG_* tokens similiar to
configuration options. These options are not available in Embedded C, use traditional
preprocessor there.

Finally, if some probe is missing from kernel, script compilation will fail. DTrace allow to
ignore such errors by passing -Z command line option. In SystemTap you may add ? at the
end of probe name to make this probe optional.

Notes

† –- unless you are running Solaris 11 which was deprecated and obsoleted many of its
system calls..

References

• Conditional compilation
• Stability

Module 1: Dynamic tracing tools. dtrace and stap tools24

https://sourceware.org/systemtap/langref/Language_elements.html#SECTION00068000000000000000
http://docs.oracle.com/cd/E19253-01/817-6223/chp-stab/index.html

Module 2: Dynamic tracing
languages

Introduction
Both DTrace and SystemTap languages have C-like syntax for dynamic tracing scripts.

Every script is a set of probes, and each of them binds to a certain event in kernel or
application, for example dispatching of a process, parsing SQL query, etc. Each probe may
have a predicate which acts as a filter of unnecessary probes, i.e. if you want to trace specific
process or specific kind of query.

Each script consists of global variables declarations followed by probes, and possibly
function declarations. In SystemTap each declaration is preceded by global, function or
probe keyword:
global counter;
function inc_counter() {
 ++counter;
}
probe timer.s(1) {
 inc_counter();
 println(counter);
}

Note

Trailing semicolons may be omitted in SystemTap Language, but we will use them in our demonstration scripts
to improve readability.

Same works for DTrace, but the syntax of definitions is different:
int xcounter;
tick-1s {
 ++xcounter;
 trace(xcounter);
}

DTrace language is limited due to safety reasons, so it doesn't support loops and conditional
statements. Conditional branch in DTrace may be emulated using predicates, and also a
limited support of ternary operator ?: is available. SystemTap, on the other hand, supports
wider subset of C language: it has for, while, if/else, foreach statements, and

25Module 2: Dynamic tracing languages

break/continue for controlling loop behavior.

SystemTap supports declaration of functions:
function dentry_name:string(dentry:long) {
 len = @cast(dentry, "dentry")->d_name->len;
 return kernel_string_n(@cast(dentry, "dentry")->d_name->name, len);
}

In this example, function dentry_name() accepts dentry argument of type long (in this
case, long is equivalent to a missing pointer type) and returns a string. It converts received
pointer to a type struct dentry, extracts string from it and returns it.

DTrace doesn't have a functions, but you may use C macro in simple cases:
#define CLOCK_TO_MS(clk) (clk) * (`nsec_per_tick / 1000000)

SystemTap language supports try/catch statement to handle tracing errors which were
described in Safety and errors section:
try {
 /* Errorneous expression: read integer on address 4 */
 println(kernel_int(4));
}
catch(msg) {
 /* Ignore errors or print message `msg` */
}

There is a hackish way of building loops in DTrace using timer probes:
int i;
BEGIN {
 i = 10;
}
tick-1ms
/--i >= 0/ {
 printf("Hello, world!\n");
}

This script prints "Hello, world" phrase 10 times. Note that there is a delay of 1 millisecond
between loop cycles, but it won't be noticed due to larger buffer switching intervals.

Finally, SystemTap have Embedded C extension (enabled only in Guru-Mode or in tapsets),
which allow to write raw C code compiled directly to module's code without passing first
three stages of translation:
function task_valid_file_handle:long (task:long, fd:long) %{ /* pure */
 [...]

 rcu_read_lock();
 if ((files = kread(->files))) {
 filp = fcheck_files(files, STAP_ARG_fd);
 STAP_RETVALUE = !!filp;
 }

 CATCH_DEREF_FAULT();
 rcu_read_unlock();
%}

This example is taken from pfiles.stp sample. It has to grab RCU lock to access file pointer
safely, which is done by direct call to rcu_read_lock() and rcu_read_unlock()
functions. Note that to access arguments and return value it has to use names prefixed with
STAP (in early versions of SystemTap there were magic pointers THIS and CONTEXT for this).

Module 2: Dynamic tracing languages26

To read pointer safely it uses kread() function.

Embedded C part starts with %{ and ends with %} and may be used as function body, and
in global scope if you need extra includes.

Probes
Definition

Probe –- is a handler of kernel or application event. When probe is installed into kernel or application, so it can
handle such event, we will call it attaching a probe or binding a probe. When event occurs and probe code is
executing, we will say probe is firing.

For example, let's see how synchronous writing to a disk is performed in Linux and what
can be traced:

When process wants to start synchronous write, it issues write() system call and by doing
that it transfers control to a kernel code, to a sys_write() function in particular. This
function eventually calls a submit_bio() function which pushes data from user process to a
queue of corresponding disk device. If we attach probes to these functions, we can gather the
following information:

• Process and thread which started input/output which is accessible via global current
pointer.

• File descriptor number which is passed as first argument of sys_write and called fd.
• Disk I/O parameters such as size and requested sector from bio structure.

To satisfy this requirements, tracing languages provide mechanisms of defining probes.
Definition of SystemTap probe begins with probe keyword followed by probe name and
body of probe handler. Name is a dotted-symbol sequence, where each symbol may have
optional parameters in braces. SystemTap supports wildcards in probe names or several probe
names in probe clause if you need to use same handler for multiple probes. For example:
probe kernel.function("vfs_*") {
 // Actions
}

probe timer.ms(100) {
 // Actions
}

probe scheduler.cpu_on {
 // Actions

27Module 2: Dynamic tracing languages

sys_write(fd, ...)

submit_bio(..., bio*, ...)

Probe

Code

task_struct* current

}

Probe names in DTrace are four identifiers separated by colons:
Provider:Module:Function:Name[-Parameter].

• Provider is a hint to DTrace on how to attach a probe. Different providers usually have
different mechanisms of attachment.

• Function and Module are relate to a code location where probe will be installed.
• Name and optional parameters provide meaningful names to a event which will be

handled in a probe. For example:
fbt::fop_*:entry {
 // Actions
}

profile-100ms {
 // Actions
}

sched:::on-cpu {
 // Actions
}

DTrace support wildcards, and some parts of probe name may be omitted: fbt:*:*:entry,
fbt:::entry are equivalent, while fop_read:entry is shorter form of
fbt:genunix:fop_read:entry.

Probe names may be combined using comma, and have multiple probes attached to same
event, for example in SystemTap:
probe syscall.read {
 /* Preparations */ }
probe syscall.read, syscall.write {
 /* Common actions for read and write */ }

Or in DTrace:
syscall::read:entry {
 /* Preparations */ }
syscall::read:entry, syscall::write:entry {
 /* Common actions for read and write */ }

First probe body going in script executes first.

If DTrace or SystemTap fail to find a probe, it will abort script translation. To overcome
that, use -Z option can be supplied to dtrace or question mark has to be added to a probe
name in SystemTap:
probe kernel.function("unknown_function") ?

Function boundary tracing

Function boundary tracing is the largest and most generic class of tracing. Function
boundary probes attach to entry point or exit (hence bounds) from a function. Since most
functions begin with saving stack and end with retq or similar instruction, tracer simply
patches that instruction, by simply replacing it to interrupt or call (depending on a platform).
That interrupt is intercepted by probe code which after execution returns control to function,
like in submit_bio case described above. Here are similar example for Solaris and DTrace:
bdev_strategy: pushq %rbp → int $0x3
bdev_strategy+1: movq %rsp,%rbp movq %rsp,%rbp

Module 2: Dynamic tracing languages28

bdev_strategy+4: subq $0x10,%rsp subq $0x10,%rsp

Warning

Userspace probes will be covered in Module 5.

SystemTap

SystemTap function probe names have the following syntax:
{kernel|module("module-pattern")}.function("function-pattern")[.{call|return|inline}]

where kernel means that function is statically linked into vmlinux binary, while module
followed by its name pattern seeks inside module. module-pattern is usually a name of a
kernel module, but may contain wildcards such as *, ?, and character class [].
function-pattern is a bit more complex: along with direct specifying its name, or using
wildcards, it also support at-suffix followed by a source file name and optional source line
number:
function-name[@source-path[{:line-number|:first-line-last-line|+relative-line-number}]]

Wildcards can be used in source-path.

Function probe name ends with suffix defining a point in function where probe should be
attached:

• .call is used to attach entry point non-inlined function, while .inline is used to attach
first instruction of inlined function;

• .return is used for return points of non-inlined functions;
• empty suffix is treated as combination of .call and .inline suffixes.

Along with attaching to any line through relative-line-number syntax, SystemTap allows to
patch any kernel instruction:
kernel.statement(function-pattern)
kernel.statement(address).absolute
module(module-pattern).statement(function-pattern)

Note

When we will use following syntax for probe names:

• {x|y|z} –- one of the options
• [optional] –- optional part of name which can be omitted
• parameter –- changeable parameter which can have different values described below

Another option is DWARF-less probing which uses kprobes if debug information is not
available:
kprobe[.module("module-pattern")].function(function-pattern)[.return]
kprobe.statement(address).absolute

DTrace

DTrace function tracing is much simpler: it is supported by fbt provider which has only
two probe names: entry for entry point and return for exit from function. For example:
fbt:e1000g:e1000g_*:entry

29Module 2: Dynamic tracing languages

System call tracing

A simplest variant of function boundary tracing is a system call tracing. In SystemTap they
are implemented as aliases on top of corresponding functions and accessible in syscall tapset:
syscall.system-call-name[.return]

DTrace uses different mechanisms for attaching to a system calls: it is implemented
through driver systrace and patches system call entry point in a sysent table. A syntax for
probes, however, is similar to fbt:
syscall::system-call-name:{entry|return}

Note that if you omit provider name, some probes will match both function and system
calls, so probe will fire twice.

Statically defined tracing

Sometimes is function boundary tracing is not enough: an event may occur inside function,
or may be spread through different functions. In DTrace and Solaris, for example, there are
two implementations of scheduler functions that are responsible for stealing task from cpu:
older disp_getbest and newer and available in newer versions of Solaris: disp_getkpq.
But they both provide steal probe that fires when dispatcher moves a thread to idle CPU:
sdt:::steal or simply steal. You can still distinguish these probes by explicitly setting
function name: sdt::disp_getbest:steal.

Another use-case for statically defined probes is long functions that contain multiple steps,
like handling TCP flags and advancing FSM of TCP-connection or handling multiple
requests at once. For example, Solaris handles task queues like this:
static void taskq_thread(void *arg)
{
 /*...*/

 for (;;) {
 /*...*/
 tqe->tqent_func(tqe->tqent_arg);
 /*...*/
 }
}

It is impossible to attach probe to a tqent_func because it is dynamically set, but Solaris
provides taskq-exec-start and taskq-exec-end probes which are set around
tqent_func call.

Probes may be added to kernel using DTRACE_PROBEn macros, i.e.:
DTRACE_PROBE3(steal, kthread_t *, tp, cpu_t *, tcp, cpu_t *, cp);

Statically defined probes are extremely useful in DTrace because it doesn't provide access
to local variables or tracing any instruction of kernel.

In Linux statically defined tracing were added in version 2.6.24, as kernel markers, but it is
deprecated now and replaced by FTrace subsystem. SystemTap supports both:
kernel.trace("tracepoint-pattern")
kernel.mark("mark")[.format("format")]

Events provided by FTrace tracepoints are defined using TRACE_EVENT macro and later
used by calling trace_ function. For example:

Module 2: Dynamic tracing languages30

TRACE_EVENT(sched_switch,
 [...]

[...]
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
 struct task_struct *next)
{
 trace_sched_switch(prev, next);
 [...]

In ideal case, statically defined probe is just a nop instruction or a sequence of them. In
Linux, however it involves multiple instructions.

Alias probes

Function boundary probes lack of stability, so dynamic tracing provide intermediate layer
that we will refer as alias probe. Alias probe is defined in kernel as statically defined probe,
like Solaris does, or provided by tapset in SystemTap and converts and extract data from its
arguments using variables in SystemTap or translators in DTrace. Creating aliases will be
covered by Translators and tapsets topic.

Timers and service probes

These probes are not related to a kernel events, but to execution of tracing script itself. They
may trace starting of script, end of it and occured error, thus handle initialization of global
variables and printing results on end of script execution. Another kind of service probe is
timer probe, which is called every ∆T time on one or all system CPUs. Timers are useful for
creating stat-like utilities which print data every second or for profiling.

Take for example profiler probe which records task name from current pointer (it always
points to task executing on CPU now):

So if we count that timer probe has fired two times, once in context of left process and once
in context of right process, we can conclude that they both consume 50% of CPU time, like
prstat and top utilities do. Profiling will be covered in Profiling section of Module 3.

In SystemTap service probes have following syntax:

31Module 2: Dynamic tracing languages

Probe

∆T

task_struct* current

Probe

context
switch

{begin|end}[(priority)]
error

Where priority is a number which defines an order of executing begin and end statements.
Explicit order is needed because begin and end probes may be specified by tapsets.

Timers are specified in a following form:
timer.unit(period)[.randomize(deviation)]

Timer probes are executed on single CPU which id is undefined. randomize allows to make
period a uniform distributed random value.

For profiling use timer.profile probe which fires on all CPUs and attaches to system
timer. You may also use perf-probes for profiling.

DTrace has BEGIN and END probes in dtrace providers. Timers are handled by profile
provider which provide two types of probes: tick which fires on any CPU once at a time
period, and profile which does the same for all CPUs. Probe name is followed by a
parameter with number and unit:
[profile:::]{tick|profile}-period[unit]

For example tick-1s will fire every second. Note that, not all platforms may provide
nanosecond or microsecond resolution, so probe will fire rarely when it should be. Timer
probes with period above 1 millisecond are usually safe to use.

SystemTap and DTrace support the following timer units:

Unit

ns nsec nanoseconds

us usec microseconds

ms msec milliseconds

s sec seconds

m min minutes (DTrace)

h hour hours (DTrace)

d day days (DTrace)

hz

jiffies

Example

Lets take following C code as an example (assuming it is located in kernel-space) and see
how its lines may be probed:
1 float tri_area(float a, float b,
2 float angle) {
3 float height;
4
5 if(a = 180.0 || angle or
 trace_triangle_height(h);
12
13 return a * height;
14 }

Lineno DTrace SystemTap

1 fbt::tri_area:entry kernel.tri_area("tri_area").call

Module 2: Dynamic tracing languages32

Lineno DTrace SystemTap

7 fbt::tri_area:return kernel.tri_area("tri_area").return
kernel.statement("tri_area+6")

9 kernel.statement("tri_area+8")

11 sdt::tri_area:triangle-height kernel.trace("triangle_height")

13 fbt::tri_area:return kernel.tri_area("tri_area").return
kernel.statement("tri_area+12")

References

DTrace

• D Program Structure
• fbt Provider
• sdt Provider
• profile Provider

SystemTap

• STAPPROBES
• Probe points

Arguments
When you bind a probe, you need to collect some data in it. In C, data is usually passed as

arguments to a function, or returned as return value. So, when you bind a function boundary
tracing probe, you may need to gather them. Argument extraction relies on calling
conventions, and extracts data directly from registers or stack.

For example, let's look at Solaris kernel function from ZFS: void spa_sync(spa_t
*spa, uint64_t txg);. First argument is ZFS representation of a pool, second is 64-bit
unsigned integer which is transaction group number. So when we bind a probe to a
spa_sync, we can print both of them:
dtrace -qn '
 ::spa_sync:entry {
 printf("synced txg=%d [%s]\n",
 args[1], args[0]->spa_name); }'

DTrace supports two forms of arguments: arg0, arg1 ... argN are uint64_t values, while
args[0], args[1] ... args[N] have actual types if DTrace is able to extract them (i.e.
DTrace forbids type hinting for unstable probes). If args[N] is unavailable, you can still
treat argN as pointer and covert it as you want:
dtrace -qn '
 ::spa_sync:entry {
 printf("synced txg=%ld [%s]\n",
 (long) arg1, ((spa_t*) arg0)->spa_name); }'

DTrace supplies two arguments for return probes: arg0 is an instruction pointer to a caller,
and arg1 or args[1] is a return value.

DWARF format used in Linux is richer than CTF from Solaris and saves not only argument
types, but their names too. They are provided in SystemTap in separate namespace beginning

33Module 2: Dynamic tracing languages

http://docs.oracle.com/cd/E19253-01/817-6223/chp-prog/index.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-fbt/index.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-sdt/index.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-profile/index.html
https://sourceware.org/systemtap/man/stapprobes.3stap.html
https://sourceware.org/systemtap/langref/Probe_points.html

with $ and followed by name of argument. It provides access to locals as well as arguments.
However, some of them may be unavailable at the probe, because they are overwritten by
other data (which is called optimized out). For example, let's look at vfs_read function from
Linux kernel:
ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t →
 *pos) {
 ssize_t ret;

 [...]

 return ret;
}

Unfortunately, variable ret is inaccessible at the return probe, but you can still get it from
%rax register on x86_64 which is used for saving return values. SystemTap supplies return
values in $return variable:
stap -e '
 probe kernel.function("vfs_read").return {
 printf("VARS:%s\nreturn: %d\n", $$vars, $return);
 exit(); }'
VARS: file=0xcfa79580 buf=0xbf9fa8b8 count=0x2004 pos=0xcf2e9f98 ret=?
return: 12

To handle such situations (and many others, i.e. when name of argument was changed in
current kernel), you may use @defined expression, or @choose_defined which works like
ternary operator: @choose_defined($a, $b) is equivalent to @defined($a)? $a : $b.
Here is an example of @defined:
if (@defined($var->field)) {
 println($var->field);
}

If you want to print all arguments simultaneously, you should carefully handle each
argument. However, SystemTap can do it automatically. Such strings provided in
meta-variables:

• $$parms contains function arguments with their names
• $$locals contains local variables with their names
• $$vars contains both $$parms and $$locals
• $$return contains return value. An example of $$vars may be found above.

Finally, SystemTap allows to convert arguments to strings, including pretty representation
of structure pointers when all fields are read, if trailing dollar sign is added to an argument:
stap -e '
 probe kernel.function("vfs_read") {
 println($file$); }'

References

• Built-in probe point types (DWARF probes)
• Troublesome Context Variables

Module 2: Dynamic tracing languages34

https://sourceware.org/systemtap/langref/Probe_points.html#SECTION00052000000000000000
https://sourceware.org/systemtap/wiki/TipContextVariables

Context
Definition

Probe context contains system state related to a fired probe, including:

• Register values
• Thread and process, which caused probe firing, including CPU where thread is running
• Currently executing probe

Context is provided as built-in variables in DTrace such as execname or as tapset functions
in SystemTap such as execname().

Userspace register values are available in DTrace through built-in variable uregs. In
SystemTap, they available through Embedded C and kernel function task_pt_regs, or a
special Embedded C variable CONTEXT, see for example implementation of uaddr() and
print_regs() tapset functions.

Here are some useful context information:

Description DTrace SystemTap

Current executing thread curthread task_current()

ID of current thread tid tid()

ID of current process pid pid()

ID of parent of current
process

ppid ppid()

User ID and group ID of
current process

uid/gid uid()/gid(), euid(), egid()

Name of current process
executable

execname curpsinfo->ps_fname execname()

Command Line Arguments curpsinfo->ps_psargs cmdline_*()

CPU number cpu cpu()

Probe names probeprov, probemod, probefunc,
probename

pp(), pn(), ppfunc(),
probefunc(), probemod()

References

• Built-in Variables
• Context Functions

Predicates
Predicates are usually go in the beginning of the probe and allow to exclude unnecessary

data from output, thus saving memory and processor time. Usually predicate is a conditional
expression, so you can use C comparison operators in there such as ==, !=, >, >=, , and
logical operators for logical AND, || for logical OR and ! for logical
negation, alas with calling functions or actions.

In DTrace predicate is a separate language construct which is going in slashes /
immediately after list of probe names. If it evaluated to true, probe is executed:
syscall::write:entry
/pid == $target/

35Module 2: Dynamic tracing languages

http://docs.oracle.com/cd/E19253-01/817-6223/chp-variables/index.html#6mlkidlfu
https://sourceware.org/systemtap/tapsets/context_stp.html

{
 printf("Written %d bytes", args[3]);
}

In SystemTap, however, there is no separate predicate language construct, but it supports
conditional statement and next statement which exits from the probe, so combining them
will give similar effect:
probe syscall.write {
 if(pid() != target())
 next;
 printf("Written %d bytes", $count);
}

Note that in SystemTap, probe will be omitted if condition in if statement is evaluated to
true thus making this logic inverse to DTrace.

Starting with SystemTap 2.6, it supports mechanism similar to predicates which is called
on-the-fly arming/disarming. When it is active, probes will be installed only when certain
condition will become true. For example:
probe syscall.write if(i > 4) {
 printf("Written %d bytes", $count);
}

This probe will be installed when i becomes more than four.

$target in DTrace (macro-substitution) and target() context function in SystemTap
have special meaning: they return PID of the process which is traced (command was provided
as -c option argument or its PID was passed as -p/-x option argument). In these examples
only write syscalls from traced process will be printed.

Warning

Sometimes, SystemTap may trace its consumer. To ignore such probes, compare process ID with stp_pid()
which returns PID of consumer.

Sometimes, if target process forking and you need to trace its children, like with -f option
in truss/strace, comparing pid() and even ppid() is not enough. In this case you may
use DTrace subroutine progenyof() which returns non-zero (treated as true) value if current
process is a direct or indirect child of the process which ID was passed as parameter. For
example, progenyof(1) will be true for all userspace processes because they are all children
to the init.

progenyof() is missing in SystemTap, but it can be simulated with task_*() functions
and the following SystemTap script (these functions are explained in Process Management):
function progenyof(pid:long) {
 parent = task_parent(task_current());
 task = pid2task(pid);

 while(parent task_pid(parent) > 0) {
 if(task == parent)
 return 1;

 parent = task_parent(parent);
 }
}

probe syscall.open {
 if(progenyof(target()))

Module 2: Dynamic tracing languages36

 printdln(" ", pid(), execname(), filename);
}

Assume that 2953 is a process ID of bash interactive session, where we open child bash
and call cat there:
root@lktest:~# bash
root@lktest:~# ps
 PID TTY TIME CMD
 2953 pts/1 00:00:01 bash
 4794 pts/1 00:00:00 bash
 4800 pts/1 00:00:00 ps
root@lktest:~# cat /etc/passwd
[...]

cat is shown by this script even if it is not direct ancestor of bash process that we are
tracing:
stap ./progeny.stp -x 2953 | grep passwd
4801 cat /etc/passwd

Types and Variables
In this section we will speak about typing in dynamic tracing languages and variable

scopes. Details on complex types are covered in further sections.

Variable types may be split in several categories. First and simpler one, is scalar types
which consist of integral types: int, uint32_t, etc, floating point types are not supported.
Second large group is pointers. Unlike C, dynamic tracing languages provide explicit string
type. SystemTap and DTrace support associative arrays and agreggations for keeping
statistics data. Finally, there is a set of complex types such as structures, enumerations,
unions and arrays. DTrace supports complex types, their definitions and even aliasing
through typedef, while in SystemTap they are implicitly used for DWARF variables, but in
scripts they are explicitly available only in Embedded C.

You can explicitly declare variable types in DTrace, thus long, uintptr_t, string, etc.
are valid identifiers in it, but it is optional for non-global variables. In SystemTap, there are
only two primitive types: long for keeping any scalar integral type or pointer, and string
for strings. Types are explicitly specified only as return values of functions or function
arguments. If types are not specified, then they are deduced from first assignment, but
dynamic typing is disallowed: in case of type incompatibility error operands have
incompatible types or type mismatch will be printed. DTrace also supports C-style type
casting:
printf("The time is %lld\n", (unsigned long long) timestamp);

37Module 2: Dynamic tracing languages

There are four variable scopes in DTrace: external, global, local and thread-local.
SystemTap doesn't support thread-local variables, but it can be emulated via associative
arrays.

In this image variable lifetimes are shown as arrows on the right of the drawing.

External variables

External variables are exported by kernel or application, for example tunable module
parameters, thus they have longest lifespan that goes beyond running tracing scripts. In
DTrace external variables are kept in separate namespace, and accessible with backtick (`)
prefix:
dtrace -qn '
 BEGIN {
 printf("Maximum pid is %d\n", `pidmax);
 exit(0); }'

In earlier versions of SystemTap they can be only read by using Embedded C capabilities:
stap -g -e '
 function get_jiffies:long() %{
 THIS->__retvalue = jiffies; %}
 probe timer.us(400) {
 printf("The time is %d jiffies\n",
 get_jiffies()); }'

Recent versions adopted a @var-expression, which accept name of variable and optionally a
path to a source file where it is located like in function probes: @var("jiffies").

Global variables

Global variables are created on script start and destroyed when script finishes their
execution. They are often initialized by begin probes and sometimes printed in the end probe.
In SystemTap global variables are declared with global keyword:
global somevar;

Module 2: Dynamic tracing languages38

Probe

context
switch

Probe

local
local

script start

thread-clause
thread-clause

global

external

script exit

You can also put an initializer to a global variable, thus it is useful to simulate constants and
enumerations:
global READ = 1;

Global variables in DTrace may be declared with type keyword, but that is optional:
uint32_t globalvar;

Aggregations in DTrace are implicitly global.

Global variables in probes are accessible by their names: globalvar += 1;.

Local variables

Local (or clause-local in terms of DTrace) variables lifespan are the shortest of all which
last only for single probe, or for a probe-prologue followed by probe in SystemTap. There is
no need to define them in SystemTap, they may be used after first assignment:
probe kernel.function("vfs_write") {
 pos = $file->f_pos;
}

In DTrace, their types may be optionally defined with this keyword, and later used with
this-> prefix:
this uint32_t localvar;

::write:entry {
 this->localvar = (uint32_t) arg0;
}

Warning

DTrace doesn't check scopes for local variables nor initialize it with zero, thus allowing racing conditions. Take
the following script as an example, which counts the number of read() system calls:

int global;
this int local;

syscall::read:entry {
 this->local++;
 global++;
}
syscall::read:return {
 printf("local: %d global: %d\n", this->local, global);
}

If you run this script in parallel with single dd process, everything will look fine:

dtrace -qs clauselocal.d -c "dd if=/dev/zero of=/dev/null"
[...]
local: 26765 global: 26765
[...]

But when you run multiple dd processes, local and global numbers will eventually differ, because in case of
race condition, new space will be allocated:

39Module 2: Dynamic tracing languages

26764

1
26765

local++

local++

global++

global++

Thread-local variables

Thread local variables are created in a context of a thread, and after thread is switched, you
will access a new instance of variable. Their syntax is similar to local DTrace variables, but
use self keyword instead of this. They are extremely useful in passing data between
distinct probes:
self int readfd; // Optional

syscall::read:entry {
 self->readfd = arg0;
}
syscall::read:return {
 printf("read %d --> %d\n", self->readfd, arg1);
}

Thread-local variables are not supported by SystemTap but may be easily simulated with
associative array whose key is a thread ID:
global readfd;
probe syscall.read {
 readfd[tid()] = fd;
}
probe syscall.read.return {
 printf("read %d --> %d\n", readfd[tid()], $return);
}

In this case thread-local variable readfd is used to pass value from entry (call) probe to
return probe. Same effect can be achieved with @entry expression in SystemTap, however it
is limited to DWARF probes and its arguments, so prologue variable fd is not accessible
with it:
probe syscall.read.return {
 printf("read %d --> %d\n", @entry($fd), $return);
}

Other use-case for thread-local variables is when you want to trace only processes that did
certain actions, and filter others. In this case, you will introduce a kind of thread-local
do_trace flag, which will be set to 1 if action was done (and probably, reset later), and later
check this flag in predicate. If value is not set in associative array in SystemTap or as
thread-local variable in DTrace, it defaults to 0, which by default disables probes. This
approach is idiomatic, and for example used in Dynamic code analysis for building code
graphs.

References

• Variables
• Data types
• Variables

Module 2: Dynamic tracing languages40

http://docs.oracle.com/cd/E19253-01/817-6223/chp-variables/index.html
https://sourceware.org/systemtap/langref/Language_elements.html#SECTION00062000000000000000
https://sourceware.org/systemtap/langref/Components_SystemTap_script.html#SECTION00043000000000000000

Pointers
Pointer is a special variable in C language that points (references) to a some data in

memory, thus pointer usually contains address of that data. It is a common way to keep
complex data structures in dynamically allocated memory, and pass a pointer between
functions or share data among them by using same pointers at all consumers. SystemTap
supports pointers in DWARF variables, but for locals it treats them as long. DTrace
simulates full support of pointers, arrays and even dynamic allocation of them. To create a
pointer you can use operator like you do in C.

Things in kernel get complicated because some pointers point to a user address space
which is not trivially accessible, so instead of dereferencing it special function is called to
copy data in or out. For example, when application issues open() system call, it keeps
pathname argument as a string located in user address space, and passes only pointer to an
argument. Moreover, some pointers may be invalid, and dereferencing them may cause
system fault. So instead of working with raw pointers, dynamic tracing languages provide set
of interfaces. In the following example, badp is bad pointer, which points nowhere, kstr
points to a data in kernel address space, while ustr references string in user address space:

Accessing a data in kernel address space in DTrace is performed by simple dereferencing it
in C-style. For example, fop_open() function accepts pointer to pointer to vnode_t, so to
get actual address of vnode_t, you need to dereference it:
dtrace -n '
 fbt::fop_open:entry {
 printf("0x%p", (uintptr_t) *args[0]); }'

User address space may be read in DTrace by using copyin, copyinstr or copyinstr
subroutines, or be overwritten with copyout/copyoutstr (requires destructive actions to be
allowed). For example, poll system call accepts array of fds, which are located in userspace
and should be copied into address space of script before being printed:
dtrace -n '
 this struct pollfd* fd0;

 syscall::pollsys:entry
 /arg1 != 0/
 {
 this->fd0 = copyin(arg0, sizeof(struct pollfd));
 printf("%s: poll %d\n", execname, this->fd0->fd); }'

SystemTap allows to access kernel and user memory through set of functions which are
implemented in tapsets conversions.stp and conversions-guru.stp. They also allow to

41Module 2: Dynamic tracing languages

u v w x y z

A B C D E F \0

FF FF 00 10

FFFF0000

FFFF0008

FFFF0010

FFFF0018

00 01 00 10

00010000

00010008

00010010

00010018

00010020

00010028

\0

char* kstr;

char* ustr;

char* badp; BA AD CA FE

U
se

r
ad

dr
es

s
sp

ac
e

K
er

ne
l

ad
dr

es
s

sp
ac

e

specify different types such as ulong or int16, but they silently convert their result to long
or string

• kernel_ reads kernel memory. For example, vfs_write call changes file position, thus
it gets position as pointer to a struct file member or a stack variable. To trace it, we have
to dereference it:
stap -e '
 probe kernel.function("vfs_write").return {
 off = kernel_long($pos);
 printf("write: off=%d\n", off); }'

• set_kernel_ writes kernel memory if Guru-mode is enabled
• user_ reads userspace memory
• kread() used for safely reading kernel space in Embedded C

Summarizing all that, we should use following to read or write first character of strings in
example above:

Operation Pointer DTrace SystemTap

read kptr *((char*) arg0) kernel_char($kptr)

badp kernel_char($kptr)
with try-catch-block

uptr *((char*) copyin(arg0, 1)) user_char($uptr)

write kptr - set_kernel_char($kptr, 'M')

badp set_kernel_char($kptr, 'M')
with try-catch-block

uptr this->c = (char*) alloca(1);
*this->c = 'M';
copyout(this->c, arg0, 1);

-

Safety notes

To avoid system panicking, before actually accessing memory through raw pointer, DTrace
and SystemTap have to:

• Check correctness of userspace pointer by comparing it with base address
• Check correctness of address by comparing it to a forbidden segments (such as

OpenFirmware locations in SPARC).
• Add extra checks to page fault interrupt handlers (in case of DTrace) or temporarily

disable pagefaults (SystemTap)

If you access to incorrect address, DTrace will warn you, but continue execution: dtrace:
error on enabled probe ID 1 (ID 1: dtrace:::BEGIN): invalid address (0x4)
in action #1 at DIF offset 16 SystemTap prints similiar message and then fail:
ERROR: kernel string copy fault at 0x0000000000000001 near identifier
'kernel_string' at /usr/share/systemtap/tapset/conversions.stp:18:10

Warning

Sometimes even correct addresses cause faults if data they point to is not in memory.

Module 2: Dynamic tracing languages42

References

• Pointers and arrays
• Actions and Subroutines
• String and data retrieving functions Tapset
• String and data writing functions Tapset

Strings
Strings in dynamic tracing languages are wrappers around C-style null-terminated char*

string, but they behave differently. In SystemTap it is simple alias, while DTrace add extra
limitations, for example, you can't access single character to a string. String operations are
listed in following table:

Operation DTrace SystemTap

Get kernel string stringof (expr) or (string)
expr

kernel_string*()

Convert a scalar type to a
string

sprint() and sprintf()

Get userspace string copyinstr() user_string*()

Compare strings ==, !=, >, >=, , –- semantically equivalent to strcmp

Concatenate two strings strjoin(str1, str2) str1 . str2

Get string length strlen(str)

Check if substring is in string strstr(haystack, needle) isinstr(haystack, needle)

Note that this operations may be used in DTrace predicates, for example:
syscall::write:entry
/strstr(execname, "sh") != 0/
{}

References

• Strings
• Actions and Subroutines
• Strings
• A collection of standard string functions

Structures
Many subsystems in Linux and Solaris have to represent their data as C structures. For

example, path to file corresponds from file-related structure dentry and filesystem-related
structure vfsmnt:
struct path {
 struct vfsmount *mnt;
 struct dentry *dentry;
};

Structure fields are accessed same way it is done in C: in DTrace depending on what you
are getting you need to use -> for pointers and . for structures. In SystemTap you should
always use -> which will be contextually converted to . where needed. Information about
structures is read from CTF sections in Solaris and DWARF sections in Linux, including

43Module 2: Dynamic tracing languages

http://docs.oracle.com/cd/E19253-01/817-6223/chp-pointers/index.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-actsub/index.html
https://sourceware.org/systemtap/tapsets/conversions.stp.html
https://sourceware.org/systemtap/tapsets/conversions-guru.stp.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-strings/index.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-actsub/index.html
https://sourceware.org/systemtap/langref/Language_elements.html#SECTION00062300000000000000
https://sourceware.org/systemtap/tapsets/string.stp.html

field names. To get C structure you may need to cast a generic pointer (void* in most cases)
to a needed structures. In DTrace it is done using C-style syntax:
(struct vnode *)((vfs_t *)this->vfsp)->vfs_vnodecovered

Conversion in SystemTap is used more often, because in many places, typed pointers are
coerced to generic long type. It is performed with @cast expression which accepts address,
name of structure as string (struct keyword is optional), and an optional third parameter
which contains name of include file, for example:
function get_netdev_name:string (addr:long) {
 return kernel_string(@cast(addr, "net_device")->name)
}

References

• Structs and Unions
• Expressions

Exercise 1
Write opentrace.d and opentrace.stp scripts which are tracing open() system calls.

They should print following information in one line:

• Call context: name of executable file, process ID, user and group IDs of user and group
which are executing process.

• Path to file which should be opened.
• A string containing open() flags O_RDONLY, O_WRONLY, O_RDWR, O_APPEND, O_CREAT
• Return value of system call

For example:
tee[939(0:0)] open("/tmp/test", O_WRONLY|O_APPEND|O_CREAT) = 3

Bit flags values are presented in following table:

Flag Solaris Linux (x86)

O_RDONLY bits 0-1 are not set

O_WRONLY 1 1

O_RDWR 2 2

O_APPEND 8 1024

O_CREAT 256 64

Test script that your created by experimenting with redirection to file or a pipe with tee
tool:
cat /etc/inittab > /tmp/test
cat /etc/inittab >> /tmp/test
cat /etc/inittab | tee /tmp/test
cat /etc/inittab | tee -a /tmp/test

Warning

In Solaris 11 open() system call was replaced with more generic openat().

Optional: Modify your scripts so only files that have "/etc" in their path will be shown.

Module 2: Dynamic tracing languages44

http://docs.oracle.com/cd/E19253-01/817-6223/chp-structs/index.html
https://sourceware.org/systemtap/langref/Language_elements.html#SECTION000661000000000000000

Associative arrays
Definition

Associative array is a sequence of values which are accessible through one or more keys. Any types may be
used for hashing, but they have to be comparable, and in some cases hashable.

Associative arrays are useful for saving last observable state related to a some object, so it
can be reused in subsequent probes. For example, let's save last read or write operation
performed on file. You will need to define keys and value types in DTrace:
string last_fop[int, int];
syscall::read:entry, syscall::write:entry {
 last_fop[pid, (int) arg0] = probefunc;
}

In SystemTap, however, they are deduced from the assignment:
global last_fop;
syscall.read, syscall.write {
 last_fop[pid(), $fd] = pn();
}

To delete entry from an associative array, it should be assigned to 0 in DTrace or deleted
using delete array[key1]; expression in SystemTap. If value does not exist, both DTrace
and SystemTap will return 0 as a default value.

In DTrace you only can access value in associative array knowing its key, in SystemTap
along with that you can walk entire array with foreach statement:
foreach([pid+, fd] in last_fop limit 100) {
 printf("%d\t%d\t%s\n", pid, fd, last_fop[pid, fd]);
}

Variables for keys are listed in square braces. If variable name ends with + or -, than keys
will be sorted in ascend or descend order correspondingly (only one key may be used for
sorting). Optional limit N part allows to limit amount of entries.

Maximum amount of entries that associative array can keep is limited by dynvarsize
tunable in DTrace or MAXMAPENTRIES in SystemTap. Additionally, you may explicitly
specify maximum number of entries in array:
global array[SIZE];

Warning

Starting with SystemTap 2.1 it allocates MAXMAPENTRIES entries for associative array on per-cpu basis (using not
only online, but possible CPUs too) at start (to avoid further allocation faults). Also, it allocates memory for
strings statically too. So to keep associative array with string key you will need at least NR_CPUS *
MAXMAPENTRIES * MAP_STRING_LENGTH which gives 128 megabytes of memory on CentOS 7.0 x86_64.

References

• Variables/Associative arrays
• Associative arrays

45Module 2: Dynamic tracing languages

http://docs.oracle.com/cd/E19253-01/817-6223/chp-variables/index.html#6mlkidlfr
https://sourceware.org/systemtap/langref/Associative_arrays.html

Aggregations
Aggregations are most useful for evaluating system performance (they are called statistics

in SystemTap). Aggregation will update intermediate set of parameters when new value is
added. Overall value is calculated from that intermediate set when its printing is requested.
Let's for example see how it works for mean value –- dynamic tracing system saves count of
added values and their sum, and when values need to be printed, sum is divided to a count:

Aggregations in DTrace reside in separate namespace: each name of aggregation begins
with at-symbol @. Single at-symbol @ is an alias to @_ and is a shorter possible aggregation
name which is useful for one-liners. Moreover, if it was not printed in the END probe, or
timer probe, DTrace will automatically print it for you. There is no need to declare
aggregation, and it support key access same way associative array does. When value is added
to a aggregation, it is "assigned" to a return value of aggregating function, i.e. @fds =
avg(arg0); will create an aggregation which calculates mean value of arg0.

SystemTap have a statistics. They are do not support indexing like associative arrays (but
they may be a values in associative arrays), thus they are special kind a variable. To create a
statistic you need to use aggregate operator instead of assignment operator =, for
example: fds . Aggregating function is used when result is printed, and
begins with @, i.e. @avg(fds) will return mean value of statistic fds.
This allows to use single statistic for multiple functions wherever
possible.

Here are list of aggregating functions (note that in SystemTap they have to be preceded
with @):

• count –- counts number of values added
• sum –- sums added value
• min/max/avg –- minimum, maximum and mean value, respectively
• stddev –- standard deviation (only in DTrace)
• lquantize –- prints linear histogram (hist_linear in SystemTap)
• quantize –- prints logarithmic histogram (hist_log in SystemTap)

The following actions may be performed on aggregations:

Action DTrace SystemTap

Add a value @aggr[keys] = func(value); aggr[keys]

Print printa(@aggr) or printa("format
string", @aggr1, @aggr2, ...)

println(@func(aggr)) (use foreach
in case of associative arrays).

Flush values and keys clear(@aggr) (only values) or
trunc(@aggr) (both keys and values)

delete aggr or delete aggr[keys]

Normalize normalize(@aggr, value); and
denormalize(@aggr);

Use division / and multiplication * on
results of aggregating functions

Limit number of values trunc(@aggr, num) Use limit clause in foreach

Module 2: Dynamic tracing languages46

aggr <<< 10SystemTap:

DTrace:

@avg(aggr)

@ = avg(10)

aggr <<< 20

@ = avg(20) printa(@)

t
count=1
sum=10

count=2
sum=30

15

Warning

Aggregations may be sorted in DTrace using aggsortkey, aggsortpos, aggsortkeypos and aggsortrev
tunables.

Aggregations are extremely useful for writing stat-like utilities. For example, let's write
utilities that count number of write system calls and amount of kilobytes they written.

Script file scripts/dtrace/wstat.d

#pragma D option aggsortkey
#pragma D option aggsortkeypos=0

syscall::write:entry
{
 @wbytes[pid, execname, arg0] = sum(arg2);
 @wops[pid, execname, arg0] = count();
}

tick-1s
{
 normalize(@wbytes, 1024);

 printf("%5s %12s %3s %7s %7s\n",
 "PID", "EXECNAME", "FD", "OPS", "KBYTES");
 printa("%5u %12s %3u %7@d %7@dK\n", @wops, @wbytes);
 clear(@wbytes);
}

Note that aggregations are follow after keys in printa format string, and they are going in
the same order they are passed as printa parameters. Format fields for aggregations use @
character. Sorting will be performed according to a PID (due to aggsortkey tunable), not by
number of operations or amount of bytes written. Option aggsortkeypos is redundant here,
because 0 is default value if aggsortkey is set.

SystemTap has similar code, but printa is implemented via our own foreach cycle. On
the other hand, we will keep only one associative array here:

Script file scripts/stap/wstat.stp

global wstat;

probe syscall.write {
 wstat[pid(), execname(), fd]

Output will be similar for DTrace and SystemTap and will look like:
PID EXECNAME FD OPS KBYTES
15881 sshd 3 1 0
16170 stapio 1 1 0
16176 python 8 8052 32208
16176 python 7 8045 32180
16176 python 10 8007 32028
16176 python 9 8055 32220

47Module 2: Dynamic tracing languages

References

• Aggregations
• Statistics (aggregates)

Time
A man used to live with a calendar and 24-hour representation of time. Coordinated

Universal Time (UTC) is used for that now. These details are not needed for most kernel or
application processes, so there is multiple time sources available for tracing tools:

Time source DTrace SystemTap

System timer is responsible for handling periodical events in
kernel such as context switch. System timer usually ticks at
constant frequency (but ticks may be omitted in tickless
kernels). Interval between firing timer is usually referred as
special unit of time: tick, lbolt in Solaris or jiffy in Linux. Timer
frequency in Linux can be get using HZ() function.

`lbolt or
`lbolt64

jiffies()

Processor cycles counter is a special CPU register which act as
a counter which increases on each cycle, such as TSC in x86 or
%tick in SPARC. It may not be monotonic.

get_cycles()

Monotonic time. Starts at unspecified moment of time (usually
at system boot), but ticks with constant intervals. May use
high-resolution time source such as HPET on x86, but may
impose some jitter between CPU cores or CPUs.

timestamp local_clock_()
or cpu_clock_()

Virtual monotonic time of thread. Similar to previous time
source, but only accounts when thread is on CPU, which is
useful to calculate CPU usage of a thread

vtimestamp

Real time or Wall-clock time. Monotonic time source which
starting point is an UNIX Epoch (00:00:00 UTC, Thursday, 1
January 1970). May use extra locks, access RTC, so it generally
slower than previous time sources

walltimestamp gettimeofday_()

In this examples is one of (s –- seconds, ms –- milliseconds, us –- microseconds and ns
–- nanoseconds). DTrace time sources always have nanosecond resolution.

Generally speaking, monotonic time sources are better for measurement relative time
intervals, while real time is used if you need precise timestamp of an event (i.e. for
cross-referencing with logs). To print a real timestamp, use ctime() function in SystemTap
which converts time to string, or use %Y format specifier in DTrace print functions.

References

• Built-in Variables
• Timestamp Functions

Module 2: Dynamic tracing languages48

http://docs.oracle.com/cd/E19253-01/817-6223/chp-aggs/index.html
https://sourceware.org/systemtap/langref/Statistics_aggregates.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-variables/index.html#6mlkidlfu
https://sourceware.org/systemtap/tapsets/timestamp_stp.html

Printing
As we mentioned earlier, DTrace and SystemTap are printing to a special channel

established between probe handlers and consumer process. SystemTap maintains multiple
channels, and some of them support prioritized printing through log() and warn()
functions.

A simplest printing doesn't allow any formatting. It is performed via trace() action in
DTrace which accepts only single argument. In SystemTap it is performed through
print[d][ln] functions which accept unspecified number of arguments, and may use first
argument as delimiter (should be constant) if d suffix is present, and add a newline if ln
suffix is present. I.e. printdln(",", $fd, $pathname) will print comma-separated line
with two parameters. Formatting output is supported through using printf() function which
accepts format string and unspecified number of arguments. Rules for creating format strings
are similiar to C standard printf() function including support for various such as %p stands
for pointer, setting width and alignment of field, etc. Dynamic tracing languages are strict
about types of arguments and format strings.

DTrace allows to print a memory dump using tracemem() action which accepts address
and number of bytes to be printed (should be constant). There is no such function in
SystemTap, but it can be simulated using for-cycle, kernel_int() functions and printf()
or use %m format specifier with width modifier which is mandatory in this case (and sets
length of memory area to be printed). Also, in some cases pretty conversion to a strings is
allowed, i.e. inet_ntop() in DTrace and ip_ntop() in SystemTap allow to convert
IP-address to a string.

To reduce competition for output buffers in multicore systems, SystemTap and DTrace
allocate buffers on per-cpu basis. Then they need to extract data from them, they switch
buffers and walk over it. Consider following example: process A starts on CPU 0 while
process B starts on CPU 1, than context switch occurs and both processes migrating on
opposite CPU (this is unrealistic situation for scheduler, so it is only an example) as shown
on picture:

In this example you will get the following output:
new A
exec B
new B
exec A

49Module 2: Dynamic tracing languages

context
switch

new A new B

exec Aexec B

cpu0 cpu1

consumer collects
buffers

This makes interpretation of output is extremely complicated especially in case of dozens
events (such as tracing ZIO pipeline in ZFS filesystem). This problem can be solved only by
adding extra key related to a request (such as process ID, like A and B in this example) to a
each line and group events in post-processing.

References

• Actions and Subroutines
• Output Formatting
• Formatted output

Speculations
Predicates is one form to get rid to useless event, but they only allow to decide when probe

is firing. What if there are several probes and decision can be made only in the last one? To
answer that problem, dynamic tracing languages support speculations. For example you may
want to trace only requests which are finished with an error code.

Speculations allow to create independent output buffer for each request using
speculation() function which returns id of that buffer. You may put it to an associative
array using some vital request information as a key, for example pointer to a structure. While
tracing you may either print data from the buffer to a main buffer using commit() function
or reject it using discard() function. Maximum number of speculations in DTrace is
regulated by nspec tunable.

To add an output to a speculation in DTrace, call speculate() function which accepts
single argument –- speculation id. After that call, all subsequent print statements in current
probe body will be redirected to a speculation buffer. In SystemTap speculate() accepts
two parameters: one for speculation id and second for string to be put into speculation, so you
should use sprintf() instead of printf() to print to a buffer.

Speculations are used in Block Input-Output scripts.

References

• Speculative Tracing
• Speculation

Tapsets translators
We already discussed problem with probe stability. Some issues may be related to changing

data structures in kernel, or several variants may exist in kernel, for example for 32- and
64-bit calls. Let's see how access to fields of that structure may be unified.

DTrace has a translators for doing that:

Script file scripts/dtrace/stat.d

struct stat_info {
 long long st_size;
};

translator struct stat_info {
 st_size = * ((long long*) copyin(s + offsetof(struct stat64_32, st_size),
 sizeof (long long)));

Module 2: Dynamic tracing languages50

http://docs.oracle.com/cd/E19253-01/817-6223/chp-actsub/index.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-fmt/index.html
https://sourceware.org/systemtap/langref/Formatted_output.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-spec/index.html
https://sourceware.org/systemtap/tapsets/speculation.stp.html

};

syscall::fstatat64:entry
{
 self->filename = copyinstr(arg1);
 self->statptr = arg2;
}

syscall::fstatat64:return
{
 printf("STAT %s size: %d\n", self->filename,
 xlate (self->statptr)->st_size);
}

In this example translator describes rules of converting source structure stat64_32 to a
structure with known format defined in DTrace stat_info. After that, xlate operator is
called which receives pointer to stat64_32 structure to a stat_info. Note that our
translator also responsible for copying data from userspace to kernel. Built-in DTrace
translators are located in /usr/lib/dtrace.

SystemTap doesn't have translators, but you can create prologue or epilogue alias which
performs necessary conversions before (or after, respectively) probe is called. These aliases
are grouped into script libraries called tapsets and put into /usr/share/systemtap/tapset
directory. Many probes that we will use in following modules are implemented in such
tapsets.

Linux has several variants for stat structure in stat() system call, some of them
deprecated, some are intended to support 64-bit sizes for 32-bit callers. By using following
tapset we will remove such differences and make them universally available through
filename and size variables:

Script file scripts/stap/tapset/lstat.stp

probe lstat = kernel.function("sys_lstat64").return ? ,
 kernel.function("sys32_lstat64").return ? {
 filename = user_string($filename);
 size = user_uint64(@cast($statbuf, "struct stat64")->st_size);
}

probe lstat = kernel.function("sys_newlstat").return ? {
 filename = user_string($filename);
%(arch == "x86_64"
%? size = user_uint64(@cast($statbuf, "struct stat")->st_size);
%: size = user_uint32(@cast($statbuf, "struct stat")->st_size);
%)
}

This example is unrealistic: it is easier to attach to vfs_lstat function which has universal
representation of stat structure and doesn't involve copying from userspace. Summarizing
the syntax of creating aliases:
probe alias-name {=|+=} probe-name-1 [?] [,probe-name-2 [?] ...] probe-body

Here = is used for creating prologue aliases and += is for epilogue aliases. Question mark
? suffix is optional and used if some functions are not present in kernel –- it allows to choose
probe from multiple possibilities.

51Module 2: Dynamic tracing languages

Warning

Note that this tapset only checks for 64-bit Intel architecture. You will need additional checks for PowerPC,
AArch64 and S/390 architectures.

After we created this tapset, it can be used very easy:

Script file scripts/stap/lstat.stp

probe lstat {
 printf("%s %d\n", filename, size);
}

Also, sometimes we have to define constants in dynamic tracing scripts that match
corresponding kernel or application constants. You can use enumerations for that in DTrace,
or define a constant variable with inline keyword:
inline int TS_RUN = 2;

You may use initializer for global variable to do that in SystemTap:
global TASK_RUNNING = 0;

If you have enabled preprocessor with -C option, you may use #define to create macro as
well.

References

• Translators
• Probe aliases

Exercise 2
Modify scripts from Exercise 1 so they count following statistics for processes that are

running in a system:

• number of attempts to open existing file;
• number of attempts to create a file;
• number of successful attempts.

At a period that is defined as command line arguments (specified in seconds) script should
print:

• Current time and day in human-readable format.
• Table that contains gathered statistics per process along with that process name and PID.

Numbers should be cleared during each iteration.

You can use module file_opener to demonstrate your scripts. This module uses working
directory which is passed as root_dir parameter, fills it with some files that are created
preliminary (their number is set by created_files parameter). While executing request, it
uses file random variable (which range is cut to [1;max_files)) and either tries to create a
file or open it depending on create parameter.

Run several experiments using TSLoad workload generator varying created_files
parameter and compare the results:
EXPDIR=/opt/tsload/var/tsload/file_opener
for I in 1 2 3; do
 mkdir /tmp/fopen$I
 tsexperiment -e $EXPDIR run \
 -s workloads:open:params:root_dir=/tmp/fopen$I \

Module 2: Dynamic tracing languages52

http://docs.oracle.com/cd/E19253-01/817-6223/chp-xlate/index.html
https://sourceware.org/systemtap/langref/Components_SystemTap_script.html#SECTION00042000000000000000

 -s workloads:open:params:created_files=$((I * 160))
done

Try to explain differences you get from the nature of file_opener workload generator
module.

53Module 2: Dynamic tracing languages

Module 3: Principles of dynamic
tracing

Applying tracing
As we mentioned in Tracing, it is used for statistics collection and performance analysis,

dynamic kernel or application debug, system audit. Imagine the situation in which various
processes running by two different users are opening files:

What problems can occur and how they are solved by dynamic tracing? Users can complain
to very slow opening of a file, so we need to do performance analysis. First of all, we have
confirm user complaints by measuring time spent in open(), read() and write() system
calls. We can also try to cross-reference slow calls and filesystems on which they occur (by
gathering mount paths), if problems are caused by bad NAS or disk. If the problem still
exists, than you will need to go down VFS stack, i.e. by measuring time spent in block I/O or

Module 3: Principles of dynamic tracing54

open()

open()

chip$ less some_file

dale$ cat other_file

b
a
s
h

b
a
s
h

l
e
s
s

c
a
t

in lookup operations.

If user encounters errors while opening files, then you will need to trace errno values.
These values are usually returned by system call functions in Linux, or saved into errno
variable in DTrace. To determine why system call returns an error, you will need dynamically
debug it by checking return values of callees. We will demonstrate it in following section. If
users try to attempt files they do not have permissions, we can record errno along with paths
and user ids, so by doing that we will perform system audit.

To demonstrate it on real example, we will use following examples and run cat
/etc/shadow from some non-root user:
dtrace -qn '
 syscall::open*:entry {
 printf("=> uid: %d pid: %d open: %s %lld\n",
 uid, pid, copyinstr(arg1), (long long) timestamp);
 }
 syscall::open*:return {
 printf("

SystemTap version:
stap -e '
 probe syscall.open {
 printf("=> uid: %d pid: %d open: %s %d\n",
 uid(), pid(), filename, local_clock_ns());
 }
 probe syscall.open.return {
 printf("

Here is sample output:
=> uid: 60004 pid: 1456 open: /etc/shadow 16208212467213

First of all, we measured time spent for open() system call: 16208212482430 —
16208212467213 = 15217 = 15.2 us. We can also see that user received an error (return
code is -1, while in case of correct call it would be positive) and now we may try to seek for
a source of a problem. Finally, we have audited attempt to open critical system file
/etc/shadow which is forbidden for users. So now we should find user name with id 60004
and politely ask him why he tried to open /etc/shadow file.

We will discuss how trace data may be analysed and what conclusion can be made from it
in this module. However, we will not introduce useful kernel or application probes as we will
discuss them in modules 4, 5. On the other hand, all examples in following modules will be
pure tracers, so you will need to add additional processing of results which will be discussed
in this module.

Dynamic code analysis
Definition

Dynamic program analysis is the analysis of computer software that is performed by executing programs on a
real or virtual processor.

We will refer to program analysis as code analysis since program is a product of code
compilation, On contrary, static code analysis is performed without actually running the
program. Code analysis helps to match program behaviour such as opening files, sending
messages over network to their code.

55Module 3: Principles of dynamic tracing

http://en.wikipedia.org/wiki/Dynamic_program_analysis

Backtraces (stacks)

Simplest way to perform code analysis is to print a backtrace.

Information

Code uses registers while function is executed most of the time. However, when function is called it will use
same registers (unless CPU supports register windows like SPARC processor do, however even they are
limited), so it has to save registers somewhere in memory including program counter, which will be used when
we return from function. Usually stack is used as memory for function locals and saved registers. It has special
rule of allocation: stack always grow to a increasing or decreasing address, each call allocate a memory beyond
current stack pointer (which is also a special register), and increases/decreases it, while each return resets value
of stack pointer to a previous, thus deallocating stack frame.

If we extract program counter and register values from a stack, we may be able to recover history of calling
functions and their arguments. For example, once I encountered panic in Solaris kernel. Printing stack (or, more
correctly backtrace) from crash dump uncovered this:

fzap_cursor_retrieve+0xc4(6001ceb7d00, 2a100d350d8, 2a100d34fc0, 0, 0, →
 2a100d34dc8)
[...]
zfsvfs_setup+0x80(6001ceb2000, 1, 400, 0, 6001a8c5400, 0)
zfs_domount+0x20c(60012b4a240, 600187a64c0, 8, 0, 18e0400, 20000)
zfs_mount+0x20c(60012b4a240, 6001ce86e80, 2a100d359d8, 600104231f8, 100, 0)
domount+0x9d0(2a100d358b0, 2a100d359d8, 6001ce86e80, 60012b4a240, 1, 0)
mount+0x108(600107da8f0, 2a100d35ad8, 0, 0, ff3474f4, 100)
[...]

Name prefix of top-level function implies that problem is in ZAP subsystem, and bottom function says that
problem occur while mounting file system. Second argument to zfs_domount function is the name of mounting
dataset. By reading string from it we were able to determine its name, make it readonly and boot the system.

In DTrace stack functions may be used as a keys to an associative arrays, or as separate
function calls (in that case they will just print the stack). Stack of kernel functions is available
by using stack() subroutine, while userspace application stack is available using ustack()
subroutine. Both of them have optional constant integer argument which specifies how many
stack frames should be printed. For example:
dtrace -c 'cat /etc/passwd' -n '
 syscall::read:entry
 /pid == $target/
 { stack(); ustack(); }'

There are multiple SystemTap functions that are responsible for printing stack:

• backtrace() and ubacktrace() returns a string containing a list of addresses in
hexadecimal format;

• print_stack() and print_ustack() get stack from string returned by backtrace
functions, convert addresses to symbols wherever possible and print it;

• print_backtrace() and print_ubacktrace() gets stack and prints it immediately,
thus no arguments accepted and no return values supplied;

• task_backtrace() accepts pointer to process/thread task_struct as a parameter and
returns its kernel stack wherever possible. Functions which have u in their names print
userspace backtrace, functions which do not have it, print kernel backtrace. For example:
stap -c 'cat /etc/passwd' -e '
 probe kernel.function("sys_read") {
 if(pid() == target())
 print_stack(backtrace());
 } '
stap -c 'cat /etc/passwd' -e '
 probe process("cat").function("read")

Module 3: Principles of dynamic tracing56

 { print_ubacktrace(); } '

Printing backtraces involves getting a symbol which matches some memory address which
involves digging into symtab or similar section of binary files. Dynamic tracing systems can
do that and print (DTrace) or return a symbol as a string (SystemTap) with following
functions:

Userspace DTrace SystemTap

Symbol usym(addr) or ufunc(addr) usymname(addr)

Symbol + offset uaddr(addr) usymdata(addr)

Library umod(addr) umodname(addr)

Kernel DTrace SystemTap

Symbol sym(addr) or func(addr) symname(addr)

Symbol + offset symdata(addr)

Library mod(addr) modname(addr)

Module, symbol + offset printf("%a", addr)

For example, some kernel interfaces like VFS are polymorphic, so they have a function
pointer table. You may extract these pointers and resolve them to a function name:
stap -c 'cat /etc/passwd' --all-modules -e '
 probe kernel.function("do_filp_open").return {
 if(_IS_ERR($return)) next;
 addr = $return->f_op->open;
 printf("name: %s, addr: %s, mod: %s\n",
 symname(addr), symdata(addr), modname(addr)); }'

Similar example for DTrace:
dtrace -c 'cat /etc/passwd' -n '
 fop_open:entry {
 this->vop_open =
 (uintptr_t)(*args[0])->v_op->vop_open;
 sym(this->vop_open); mod(this->vop_open); }'

In this example when cat will try to open file, tracing script catch this event and show
name of filesystem driver and function from it implementing open() call (unless it is generic
function from kernel).

Warning

By default SystemTap seeks only in vmlinux or binary executable files. To search over libraries and modules,
use -d, --all-modules and --ldd options as stated in SystemTap.

Warning

In DTrace symbols are resolved by consumer, not by DIF interpreter –- that is why they do not return strings,
and not usable in string functions. Moreover, if when buffers are switched module was unloaded or process is
finished, DTrace will fail to resolve symbols and print raw address in stack or symbol functions.

57Module 3: Principles of dynamic tracing

SystemTap and DTrace have different formats when printing backtrace symbol names:

Call trees

Note that backtraces show only a stack, a linear structure of functions that lead to event,
they do not include callees that were previously called, but already exited. For example in
following code (which obviously causes a segmentation fault):
char* foo() {
 return NULL; }
void bar() {
 char* str = foo();
 puts(str); }

we will see functions bar() and puts() on stack, but the problem is caused by foo()
function. To trace it along with other functions, we will need a call tree, which is close to call
graph which is collected during static calling analysis.

Global or thread-local flag (say traceme) is used to gather call tree. It is set when we enter
some function (which is considered a bound for tracing), and reset when we leave it. In
following example, we, for example, may limit tracing by using bar() as our bound.
Without using such boundary functions, tracing will have too much performance penalties.
Probes are attached to all functions, but predicate is used to check if traceme flag, so only
useful probes will be printed. Such probe only print names of functions preceded with indent
whether indent is set according to a depth of call, so output look like a tree.

DANGER!

To attach to all kernel functions in SystemTap you have to use kernel.function("*") construct. But even
with blacklisted probes, it will most likely panic system, or cause a serious system slowdown. To keep that from
happen, limit number of attached probes to a module or at least subsystem by using @path/to/files.c
construct like we do in following examples. In DTrace, however fbt::: is pretty safe and may only cause a
temporary small freeze (while probes are attached).

For example, let's see how this approach helps find a source of fault in system call. We will
try to execute cat not_exists file which will set errno to ENOENT as expected. Let's find a
kernel function that actually reports ENOENT. Usually, negative integer return value used for
that, so we will print return values in function return values. This approach is also useful
when you have no permission to open file and want to find a security hardening module that
stops you from doing that.

In SystemTap call tree indentation is performed through indent() and thread_indent()
which are maintaining internal buffer, and increase or decrease number of space characters in
it according to a number passed as argument to that functions. It is used in following script:

Script file scripts/stap/callgraph.stp

#!/usr/bin/stap

global traceme;
Module 3: Principles of dynamic tracing58

Function

syscall_call+0x7/0xb [kernel]

Offset

Module

SystemTap:

Function

unix`sys_call+0x100

OffsetModule

DTrace:

probe syscall.open {
 if(pid() != target() || filename != "not_exists")
 next;

 traceme = target();

 printf("=> syscall.open [%s]\n", execname());
}

probe syscall.open.return {
 if(pid() == target()) {
 traceme = 0;
 }
}

probe kernel.function("*@fs/*").call ?,
 kernel.function("*@fs/*").return ? {
 if(!traceme || traceme != pid())
 next;

 if(!is_return()) {
 printf("%s -> %s\n", indent(1), probefunc());
 }
 else {
 ret = 0;
 if(@defined($return))
 ret = $return;

 printf("%s

Output will be following:
./callgraph.stp -c "cat not_exists"
cat: not_exists: No such file or directory
=> syscall.open [cat]
0 : -> do_sys_open
[...]
11020 : -> do_filp_open
[...]
11982 : -> do_path_lookup
12277 : -> path_init
12378 : path_walk
12581 : -> __link_path_walk
[...]
14284 :
14339 : -> path_put
[...]
14655 : 14732 :
14755 :
[...]
15449 : 15851 :

So, now we can say that problem is in __link_path_walk function. This is output from
CentOS 6, in modern kernels __link_path_walk is deleted and responsible function would
be path_openat.

indent() function also prints time delta in microseconds since first call.
thread_indent() also prints information about execution thread and maintains separate

59Module 3: Principles of dynamic tracing

buffer for each thread.

DTrace consumer supports automatic indentation of output if flowindent tunable is set:

Script file scripts/dtrace/callgraph.d

#!/usr/sbin/dtrace -s

#pragma D option flowindent

syscall::open*:entry
/pid == $target copyinstr(arg0) == "not_exists"/
{
 self->traceme = 1;
}

syscall::open*:return
/self->traceme/
{
 self->traceme = 0;
}

fbt:::entry
/self->traceme probefunc != "bcmp"/
{

}

fbt:::return
/self->traceme probefunc != "bcmp"/
{
 trace(arg1);
}

Script output for ZFS filesystem will be similiar and reveal that ENOENT error was raised by
ZFS module:
dtrace -s ./callgraph.d -c "cat not_exists"
dtrace: script './callgraph.d' matched 69098 probes
cat: not_exists: No such file or directory
CPU FUNCTION
 0 -> open64
 0 openat64
 0 copen
[...]
 0 -> vn_openat
 0 -> lookupnameat
 0 -> lookupnameatcred
[...]
 0 -> fop_lookup
 0 -> crgetmapped
 0 zfs_lookup
[...]
 0
 0
 0 -> vn_rele
 0 0
 0
 0

Module 3: Principles of dynamic tracing60

 0
 0
[...]
 0 -> set_errno
 0
 0

More backtraces

You may also need to track state of kernel data structures or passing parameters during
tracing, if you wish to extend your knowledge about kernel or application. Now we know
from our traces that Linux uses __link_path_walk() and Solaris has lookuppnvp()
functions to lookup file on filesystems. Let's see, how they handle symbolic links. Let's create
one first:
touch file
ln -s file symlink

As you can see, Linux calls __link_path_walk recursively:
stap -e '
 probe kernel.function(%(kernel_v >= "2.6.32"
 %? "link_path_walk"
 %: "__link_path_walk" %)) {
 println(kernel_string($name));
 print_backtrace(); }' -c 'cat symlink'
symlink
 0xffffffff811ad470 : __link_path_walk+0x0/0x840 [kernel]
 0xffffffff811ae39a : path_walk+0x6a/0xe0 [kernel]
 0xffffffff811ae56b : do_path_lookup+0x5b/0xa0 [kernel]
[...]
file
 0xffffffff811ad470 : __link_path_walk+0x0/0x840 [kernel]
 0xffffffff811ade31 : do_follow_link+0x181/0x450 [kernel]
 0xffffffff811adc1b : __link_path_walk+0x7ab/0x840 [kernel]
 0xffffffff811ae39a : path_walk+0x6a/0xe0 [kernel]
[...]

Since this function was removed in recent kernels, this behaviour is not reproducible in
them.

In Solaris, however, this function is called only once –- for symbolical link:
dtrace -n '
 lookuppnvp:entry {
 trace(stringof(args[0]->pn_path));
 stack(); }' -c 'cat symlink'
 1 19799 lookuppnvp:entry symlink
 genunix`lookuppnatcred+0x119
 genunix`lookupnameatcred+0x97
 genunix`lookupnameat+0x6b
[...]

61Module 3: Principles of dynamic tracing

Profiling
Consider the following task: you need to know which functions are called more often than

others or spend most time when executing because it makes them perfect targets for code
optimization. You may do it by attaching to every function entry and exit point the following
script:
fbt:::entry {
 self->start = timestamp;
}

fbt:::return
/self->start/
{
 @fc[probefunc] = count();
 @ft[probefunc] = avg(timestamp - self->start);
}
tick-1s {
 printa("%s %@d %@d", @fc, @ft);
 trunc(@fc); trunc(@ft) }

DANGER!

This script is conceptual! Do not run it on real system.

If you were able to collect data with this script, you'll got population, but you couldn't do
that. Usually function call takes several processor cycles and a single instruction, but when
you run it, you'll need hundreds of instructions (for getting timestamp and writing to a
aggregation), which causes colossal overhead. Statistics theory, however, provides a solution
to that: instead of gathering entire population, you may reduce it to a sample, which is
representative (reproduces significant properties of a population). Collecting a sample is
called sampling, while sampling function calls is usually referred as profiling.

Definition

In software engineering, profiling is a form of dynamic program analysis that measures, for example, the space
(memory) or time complexity of a program, the usage of particular instructions, or the frequency and duration of
function calls. Most commonly, profiling information serves to aid program optimization.

Modern operating systems provide builtin profilers, such as OProfile and SysProf in Linux
which were replaced with perf subsystem since 2.6.31 kernel or er_kernel from Solaris
Studio. However, Dynamic tracing languages allow to build custom profilers.

A simplest profiler records process ID to see which processes or threads consume CPU
resources more than others, as we discussed about timer probes. They may be implemented
with following DTrace script:
dtrace -qn '
 profile-997hz {
 @load[pid, execname] = count();
 }
 tick-20s { exit(0); }'

Or in SystemTap:
stap -e 'global load;
 probe timer.profile {
 load[pid(), execname()]

Module 3: Principles of dynamic tracing62

If we want to go down to a function level, we need to access program counter register (or
instruction pointer in x86 terminology) each time profiling probe fires. We will refer to
program counter as PC later in this book. In DTrace these values are explicitly provided in
arg0 –- PC in kernel mode and arg1 –- PC in userspace mode in profiling probes.
Depending on if process was in kernel mode when profiling probe fired or not, arg0 or arg1
will be set to 0. Moreover, you may always get current userspace program counter using
uregs array: uregs[REG_PC]. There is also caller and ucaller built-in variables.

You can use addr() tapset function in SystemTap which returns userspace PC or kernel
PC depending on where probe were fired (some probes do not allow that, so 0 will be
returned). To get userspace address explicitly, use uaddr() function.

Warning

Note that we were used profile-997hz probe to avoid "phasing": if we'd used profile-1000hz probe, there
were a chance, that all probes were fired while system timer handler is working, thus making profiling useless
(we will see that 100% of time kernel spends in system timer). In SystemTap timer.profile uses system timer
for profiling, but addr() and uaddr() return correct values.

CPU performance measurement

Even if you collect program counter values, you will get what functions use CPU the most,
but that doesn't mean that utilize processor resources effectively. For example, it can spend
most of the time waiting for memory or cache or reset pipeline due to branch misprediction
instead of utilizing ALU for actual computations. Such wasted cycles are referred as stalled
in Intel processor documentation.

Modern processors allow to measure influence of such performance penalties through CPU
performance counters. Each time such event happens, CPU increments value of the counter.
When counter exceeds threshold, exception is arisen which may be handled by dynamic
tracing system. Or, counter may be read from userspace application, for example with rdpmc
assembly instruction on Intel CPUs.

You may use cpustat tool to get list of available CPU events in Solaris:
cpustat -h
[...]
event0: cpu_clk_unhalted.thread_p inst_retired.any_p

Description of such events may be found in CPU's documentation. SPARC counters are
described in the book "Solaris Application Programming", but it lacks description of newer
CPUs (SPARC T3 and later). However, documentation on SPARC T4 and T5 may be found
here: Systems Documentation. Solaris also provides CPU-independent generic counters
which names start with PAPI prefix.

Linux have separate subsystem that is responsible for providing access to CPU performance
counters: perf. It has userspace utility perf, which can show you list of supported events:
perf list
List of pre-defined events (to be used in -e):
 cpu-cycles OR cycles [Hardware event]
 instructions [Hardware event]

You can use userspace tools perf in Linux or cpustat/cputrack in Solaris to gather CPU
counters.

DTrace provides CPU counters through cpc provider (which is implemented through
separate kernel module). It probe names consists from multiple parameters:

63Module 3: Principles of dynamic tracing

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-servers-documentation-163529.html

EventName-{kernel|user|all}[-Mask]-Number

EventName is a name of event taken from cpustat output (and matches documentation
name in case of Intel CPUs). Following parameter defines a mode: kernel probes only
account kernel instructions, user only work for userspace, and all will profile both. Number is
a threshold for a counter after which probe will fire. Do not set Number to a small values to
avoid overheads and system lockup, 10000 provides is relatively accurate readings. Mask is
an optional parameter which allows to filter devices which accounted in performance
counters (such as memory controllers or cores) and should be a hexademical number.

For example, you may use probe PAPI_l3_tcm-user-10000 to measure number of
userspace misses to last-level cache which is L3 cache in our case:
dtrace -n '
 cpc:::PAPI_l3_tcm-user-10000
 /arg1 != 0/ {
 @[usym(arg1)] = count(); }
 END {
 trunc(@, 20);
 printa(@);
 }'

SystemTap provides access to CPU counter using perf tapset:
stap -l 'perf.*.*'
perf.hw.branch_instructions
[...]
stap -l 'perf.*.*.*.*'
perf.hw_cache.bpu.read.access

These probes are actually aliases for the following probes:
perf.type(type).config(config)[.sample(sample)][.process("process-name")][.counter("counter-name")]

type and config are numbers used in perf_event_attr –- their values may be found in
header linux/perf_event.h. sample is a number of events after which probe firing.
process-name allows to monitor only certain processes instead of system-wide sampling and
contains name of the process (path to executable). counter-name allows to set an alias for
performance counter which will be later used for @perf expression (see below).

To measure last userspace level cache misses in SystemTap, you may use following script:
stap -v -e '
 global misses;
 probe perf.hw_cache.ll.read.miss {
 if(!user_mode()) next;
 misses[probefunc()]

Warning

These examples were tested on Intel Xeon E5-2420 processor. Like we mentioned before, performance counters
are CPU-specific.

SystemTap allows to create per-processor counter which can be read later:
stap -v -t -e '
 probe perf.hw.instructions
 .process("/bin/bash").counter("insns") { }

 probe process("/bin/bash").function("cd_builtin") {
 printf(" insns = %d\n", @perf("insns"));
 }'

Module 3: Principles of dynamic tracing64

Warning

There is a bug PR-17660 which can cause BUG() in kernel when you use @perf in userspace. It seem to be
resolved in current SystemTap/Kernel.

Performance analysis
Computer users, system administrators and developers are interested in improving of

performance of computer systems and dynamic tracing languages are very handful in
analysing soft spots of computer systems. We will use two characteristics of computer system
to evaluate its performance most of the time: throughput and time spent for servicing request
(usually referred as latency). These two characteristics depend on each other as following
picture shows:

Information

For example, let's imagine a newspaper kiosk. Than number of customers per hour will be its arrival rate.
Sometimes, when clerk is busy while servicing customer, other customers will form a queue, which can is
measurable to queue length. Growing queues is a sign of the system's saturation. Throughput of the kiosk is the
number of customers which bought a newspaper per hour. However, if number of customers is too large, kiosk
couldn't service them all, and some of them will leave after waiting in line –- they are treated as errors. When
kiosk reaches its saturation point or the knee, throughput of the kiosk will fall, and number of errors will
increase, because clerk will be tired.

Latency consists of service time which depends on many factors: i.e. if customer need change or clerk can't find
copy of newspaper it will grow, and waiting time –- time spent by a customer waiting in queue. Utilization is
defined by a fraction time that clerk spends servicing their customers. I.e. if clerk spends 15 minutes to sell a
magazines or newspapers per hour, utilization is 25%.

These definitions are part of queueing theory which was applied to telephone exchange, but it is also applicable
to computer systems. Either network packet or block input-output operations may be considered as request,
while corresponding driver and device are considered as servers. In our kiosk example, customer were the
requests while clerk at the kiosk was the server.

To measure throughput we have to attach a probe to one of the functions responsible for
handling requests, and use count() aggregation in it. It is preferable to use the last function
responsible for that, because it will improve data robustness. Using a timer, we will print the
aggregation value and clear it. For example, throughput of disk subsystem may be measured
using following SystemTap script:
stap -e ' global io;
 probe ioblock.end {
 size = 0
 for(vi = 0; vi bi_vcnt; ++vi)

65Module 3: Principles of dynamic tracing

Latency

Throughput

Arrival
rate

Knee

https://sourceware.org/bugzilla/show_bug.cgi?id=17660

 size += $bio->bi_io_vec[vi]->bv_len;
 io[devname]

Or with DTrace:
dtrace -n '
 io:::done {
 @[args[1]->dev_statname] = sum(args[0]->b_bcount);
 }
 tick-1s {
 printa(@);
 clear(@);
 }'

To measure arrival rate, on contrary, we need first functions which handle request "arrival"
which are in our case ioblock.request and io:::start correspondingly. These probes
will be covered in Block Input-Output section.

Latency measurement is a bit more complicated. We will need to add probes to request
arrival and final handler and calculate time difference between these two moments. So we
need to save a timestamp of a request arrival and retrieve it at the final handler probe. The
easiest way to do that is thread-local variables, but it is not guaranteed that final handler will
be called from same context request was created from. For example, final handler may be
called from IRQ handler thread. In such cases we will need associative arrays and a unique
request key retrievable on both sides, which is usually an address of requests descriptor in
memory. For block input-output is struct buf in Solaris and struct bio in Linux. So
let's calculate mean latency in SystemTap:
stap -e ' global start, times;
 probe ioblock.request {
 start[$bio] = gettimeofday_us();
 }
 probe ioblock.end {
 if(start[$bio] != 0)
 times[devname]

Similar script is for DTrace:
dtrace -qn '
 io:::start {
 iostart[arg0] = timestamp;
 }
 io:::done {
 @rq_svc_t[args[1]->dev_statname] = avg(timestamp - iostart[arg0]);
 }
 tick-1s {
 printf("%12s %8s %Y\n", "DEVICE", "ASVC_T", walltimestamp);
 printa("%12s %@8d\n", @rq_svc_t);
 clear(@rq_svc_t);
 } '

Utilization may be measured similar to a profiling: high-resolution timer determines if
server is busy or not, so utilization will be busy ticks to all ticks ratio. Queue length may be
modelled from arrival rate and dispatch rate, but in many cases it is explicitly accessible from
kernel or application data.

Module 3: Principles of dynamic tracing66

Pre- and post-processing
Despite the flexibility of the dynamic tracing languages, it lacks of common tools to create

user-friendly interfaces like command line options to generate different filtering with
predicates, sorting and omitting columns, making scripts are hard to reuse. For example,
iosnoop from DTraceToolkit allows to generate user-printable timestamps or not with -v
option, filter device or PID with -d and -p options, and a series of options that enable or
disable showing various columns.

In such cases we can use general purpose scripting language such as Python, Perl or even
shell-script to generate dynamic tracing on-the fly, run it, read its output in some form and
than print it in human-readable form:

For example, let's add the following capabilities to our open() system call tracer:
customizable per-pid and per-user filters, and also make it universal –- capable running in
DTrace and SystemTap.

Script file scripts/src/opentrace.py

#!/usr/bin/env python

import sys, os, subprocess, platform
from optparse import OptionParser

opentrace.py - Trace open syscalls via SystemTap or DTrace
supports filtering per UID or PID

optparser = OptionParser()

optparser.add_option('-S', '--stap', action='store_true',
 dest='systemtap', help='Run SystemTap')
optparser.add_option('-D', '--dtrace', action='store_true',
 dest='dtrace', help='Run DTrace')
optparser.add_option('-p', '--pid', action='store', type='int',
 dest='pid', default='-1', metavar='PID',
 help='Trace process with specified PID')
optparser.add_option('-u', '--uid', action='store', type='int',
 dest='uid', default='-1', metavar='UID',
 help='Filter traced processes by UID')
optparser.add_option('-c', '--command', action='store', type='string',
 dest='command', metavar='CMD',
 help='Run specified command CMD and trace it')

(opts, args) = optparser.parse_args()

if opts.pid >= 0 and opts.command is not None:
 optparser.error('-p and -c are mutually exclusive')
if (opts.pid >= 0 or opts.command is not None) and opts.uid >= 0:

67Module 3: Principles of dynamic tracing

Konsole
=> check_preempt_wakeup:
 se: curr tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-978205 vruntime: MIN+0
 se: se tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+41023325 vruntime: MIN+-6000000
 CFS_RQ: /
 nr_running: 2 load.weight: 2048 min_vruntime: 314380161884
 runnable_load_avg: 1067 blocked_load_avg: 0
 se: first tsexperiment/6063 SCHED_NORMAL

se: rb: tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+41023325 vruntime: MIN+-6000000
<= check_preempt_wakeup

=> task_tick_fair J=4302675615 queued: 0
 sched_slice: 6000000
 se: curr tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-260001 vruntime: MIN+260001
 delta_exec: 42261531 delta: 6260001
<= task_tick_fair

.py .stp

stap

.py

fiotrace.py
 -t open
 -P PID

probe
syscall.open {
 ...
}

101,1245,open,"/etc/passwd",1
0,1389,open,"/etc/hosts",1
…
0,1811,open,"/root/.bashrc",2

 USER PID OPEN
 myaut 1245 10
 root 1389 31
 root 1811 5

 optparser.error('-p or -c are mutually exclusive with -u')
if opts.systemtap and opts.dtrace:
 optparser.error('-S and -D are mutually exclusive')

if not opts.systemtap and not opts.dtrace:
 # Try to guess based on operating system
 opts.systemtap = sys.platform == 'linux2'
 opts.dtrace = sys.platform == 'sunos5'
if not opts.systemtap and not opts.dtrace:
 optparser.error('DTrace or SystemTap are non-standard for your platform, →
 please specify -S or -D option')

def run_tracer(entry, ret, cond_proc, cond_user, cond_default,
 env_bin_var, env_bin_path,
 opt_pid, opt_command, args, fmt_probe):
 cmdargs = [os.getenv(env_bin_var, env_bin_path)]
 if opts.pid >= 0:
 cmdargs.extend([opt_pid, str(opts.pid)])
 entry['cond'] = ret['cond'] = cond_proc
 elif opts.command is not None:
 cmdargs.extend([opt_command, opts.command])
 entry['cond'] = ret['cond'] = cond_proc
 elif opts.uid >= 0:
 entry['cond'] = ret['cond'] = cond_user % opts.uid
 else:
 entry['cond'] = ret['cond'] = cond_default
 cmdargs.extend(args)

 proc = subprocess.Popen(cmdargs, stdin=subprocess.PIPE)
 proc.stdin.write(fmt_probe % entry)
 proc.stdin.write(fmt_probe % ret)

 proc.stdin.close()
 proc.wait()

if opts.systemtap:
 entry = {'name': 'syscall.open',
 'dump': '''printf("=> uid: %d pid: %d open: %s %d\\n",
 uid(), pid(), filename, gettimeofday_ns());'''}
 ret = {'name': 'syscall.open.return',
 'dump': '''printf(" uid: %%d pid: %%d open: %%s %%lld\\n",
 uid, pid, copyinstr(%s), (long long) timestamp); ''' % fn_arg}
 ret = {'name': 'syscall::%s:return' % sc_name,
 'dump': '''printf("

First half of this script is an option parser implemented with OptionParser Python class
and intended to parse command-line arguments, provide help for them and check their
correctness –- i.e. mutually-exclusive options, etc. Second half of the script is a
run_tracer() function that accepts multiple arguments and if-else statement that
depending on chosen dynamic tracing system, generates parameters for run_tracer() as
follows:

Parameter Description SystemTap DTrace

entry entry probe name and
body

syscall.open syscall::open*:entry or
syscall::openat*:entry
depending on Solaris version

Module 3: Principles of dynamic tracing68

Parameter Description SystemTap DTrace

ret return probe name and
body

syscall.open.return Similiar to entry probe, but with
name return

cond_proc predicate for picking a
process

pid() != target() pid == $target

cond_user predicate template for
per-user tracing

uid() != %d uid == %d

cond_default always-true predicate 0 1

env_bin_var environment option used
to override path to
DTrace/SystemTap binary

STAP_PATH DTRACE_PATH

env_bin_path default path to
DTrace/SystemTap binary

/usr/bin/stap /usr/sbin/dtrace

opt_pid option for tracing tool
accepting PID

-x -p

opt_pid option for tracing tool
accepting new command

-c -c

args arguments to read script
from stdin

- -q -s /dev/fd/0

fmt_probe format string for constructing probes

So this script generate predicate condition uid == 100 for the following command-line:
python opentrace.py -D -u 100

Post-processing is intended to analyse already collected trace file, but it might be run in
parallel with tracing process. However, it allows to defer trace analysis –- i.e. collect
maximum data as we can, and then cut out irrelevant data, showing only useful. This can be
performed using either Python, Perl, or other scripting languages or even use statical analysis
languages like R. Moreover, post-processing allows to reorder or sort tracing output which
can also help to avoid data mixing caused by per-process buffers.

The next script will read opentrace.py output, merge information from entry and return
probes, and convert user-ids and time intervals to a convenient form. Like in dynamic tracing
languages we will use an associative array states which is implemented as dict type in
Python to save data from entry probes and use process ID as a key.

Script file scripts/src/openproc.py

#!/usr/bin/env python

import re
import sys

openproc.py - Collect data from opentrace.py and merge :entry and :return →
 probes

Open trace file or use stdin
try:
 inf = file(sys.argv[1], 'r')
except OSError as ose:
 print ose
 print '''openproc.py [filename]'''

69Module 3: Principles of dynamic tracing

 sys.exit(1)
except IndexError:
 inf = sys.stdin

Convert time to human time
def human_time(ns):
 ns = float(ns)
 for unit in ['ns', 'us', 'ms']:
 if abs(ns) = 0 else 'ERROR %d' % ret

 print 'OPEN %s %d %s => %s [%s]' % (users.get(uid, str(uid)),
 pid, state[pid][1], status,
 human_time(tm - state[pid][0]))
 del state[pid]

If we pipe opentrace.py output to this script, we can get similar data:
python opentrace.py -c 'cat /tmp/not_exists' |
 python openproc.py
 cat: cannot open /tmp/not_exists: No such file or directory
 [...]
 OPEN root 3584 /tmp/not_exists => ERROR -1 [10.17 us]
 [...]

Warning

This is only a demonstration script, and many of their features may be implemented using SystemTap or
DTrace. Moreover, they allow to use system() calls an external program, for example to parse /etc/passwd
and get user name. However, it will cost much more, and if this call will introduce more open() calls (which it
will obviously do), we will get more traced calls and a eternal loop.

Visualization
Reading trace files is exhausting, so the most popular scenario for the post-processing is

visualization. There are multiple standard ways to do that:

• Use GNU Plot as shown here: System utilization graphing with Gnuplot. Tracing script
directly generates commands which are passed to GNU Plot.

• DTrace Chime plugin for the NetBeans
• SystemTap GUI
• Writing you own visualization script. For example, following examples were generated

using Python library matplotlib.

Which types diagrams are mostly useful? Let's find out.

Linear diagram

Module 3: Principles of dynamic tracing70

https://sourceware.org/systemtap/wiki/WSUtilGraphWithGnuplot
http://wiki.netbeans.org/NetBeans_DTrace_GUI_Plugin_1_0
http://stapgui.sourceforge.net/

The simplest one is a linear diagram. X axis in that diagram is the time, so it allows to see
changes in system's behaviour over time. These diagrams may be combined together (but the
time axis should be same on all plots), which allows to reveal correlations between
characteristics, as shown on following image:

These three characteristics are names of the probes from vminfo provider in DTrace: zfod
stands for zero-filled on-demand which is page allocation, while pgpgin and pgpgout are
events related to reading/writing pages to a backing store, such as disk swap partition. In this
case, memeat process (which name is self-explanatory –- it allocates all available RAM)
allocates plenty of memory, so number of zfod events is high, causing to some pages being
read or written to a disk swap.

Tracing a scheduler

Now let's run following loop in a shell which periodically eats lots of CPU than sleeps for 5
seconds:
while :
 do
 for I in {0..4000}
 do
 echo '1' > /dev/null
 done
 sleep 5
 done

And gather scheduler trace: each time it dispatches a new process we will trace process
name, cpu and timestamp:
dtrace -n '
 sched:::on-cpu {
 printf("%d %d %s\n", timestamp,
 cpu, (curthread ==
 curthread->t_cpu->cpu_idle_thread)
 ? "idle"
 : execname); }'

71Module 3: Principles of dynamic tracing

Histograms

In many cases of performance analysis we rely on average values, which are not very
representative.

Information

Consider the following example: you apply to a job in some company which has 100 employees and average
salary is about 30k roubles. This data can have many interpretations:

CEO salary Senior staff salary Junior staff salary

100k roubles 48k roubles 25k roubles

2 million roubles 23k roubles 7k roubles

Would you want to work there if salary is distributed according row? Doubtful. Like with employment, you
cannot rely on average readings in performance analysis: average latency 10ms doesn't mean that all users are
satisfied –- some of them may had to wait seconds for web-page to render.

If we calculate per-process difference between scheduler timestamps and build a
logarithmic histogram plot, we'll see several requests which lasts for seconds:

Y axis is logarithmic and represents a number of observed intervals when CPU was busy
for time period shown on X axis. If we normalize this characteristic, we will get probability
density function.

Warning

Aggregations quantize()/hist_linear() and lquantize()/hist_log() might do the same, but in text
terminal.

Heat maps

Module 3: Principles of dynamic tracing72

When two axes is not enough for your graph, you may also use a colour intensity of each
pixel too. Let's see, how CPU usage is distributed across CPUs. To do so we need pick a step
for the observation interval, say T=100ms, accumulate all intervals when non-idle thread were
on that CPU, say t, than pixel's intensity will be 1.0 - t/T so 1.0 (white) will say that
CPU was idle all the time, while 0.0 (black) will be evidence that CPU is very busy. For our
example, we will see, that CPU 4 is periodically runs CPU-bound tasks:

Gantt charts

Generally speaking, gantt charts help to understand state of the system across the timeline.
For example they are helpful in planning projects: what job needs to be done by whom and
when, so the jobs are placed on X axis while Y axis is a timeline, and color is used to
distinguish teams responsible for jobs. In our case we may be interested in how load
distributed across CPUs, and what's causing it, so we here are a gantt chart:

We added process name to the longest bars, and it seems that bash process causing trouble.
We could discover it before, adding tags on histogram.

73Module 3: Principles of dynamic tracing

Module 4: Operating system kernel
tracing

Process management
Definition

According to Andrew Tanenbaum's book "Modern Operating Systems",

All the runnable software on the computer, sometimes including the operating system, is organized into a
number of sequential processes, or just processes for short. A process is just an instance of an executing
program, including the current values of the program counter, registers, and variables.

Information

Each process has its own address space –- in modern processors it is implemented as a set of pages which map
virtual addresses to a physical memory. When another process has to be executed on CPU, context switch
occurs: after it processor special registers point to a new set of page tables, thus new virtual address space is
used. Virtual address space also contains all binaries and libraries and saved process counter value, so another
process will be executed after context switch. Processes may also have multiple threads. Each thread has
independent state, including program counter and stack, thus threads may be executed in parallel, but they all
threads share same address space.

Process tree in Linux

Processes and threads are implemented through universal task_struct structure (defined
in include/linux/sched.h), so we will refer in our book as tasks. The first thread in
process is called task group leader and all other threads are linked through list node
thread_node and contain pointer group_leader which references task_struct of their
process, that is , the task_struct of task group leader. Children processes refer to parent
process through parent pointer and link through sibling list node. Parent process is linked
with its children using children list head.

Module 4: Operating system kernel tracing74

Relations between task_struct objects are shown in the following picture:

Task which is currently executed on CPU is accessible through current macro which
actually calls function to get task from run-queue of CPU where it is called. To get current
pointer in SystemTap, use task_current(). You can also get pointer to a task_struct
using pid2task() function which accepts PID as its first argument. Task tapset provides
several functions similar for functions used as Probe Context. They all get pointer to a
task_struct as their argument:

• task_pid() and task_tid() –- ID of the process ID (stored in tgid field) and thread
(stored in pid field) respectively. Note that kernel most of the kernel code doesn't check
cached pid and tgid but use namespace wrappers.

• task_parent() –- returns pointer to a parent process, stored in parent/real_parent
fields

• task_state() –- returns state bitmask stored in state, such as TASK_RUNNING (0),
TASK_INTERRUPTIBLE (1), TASK_UNINTTERRUPTIBLE (2). Last 2 values are for sleeping or
waiting tasks –- the difference that only interruptible tasks may receive signals.

• task_execname() –- reads executable name from comm field, which stores base name
of executable path. Note that comm respects symbolic links.

• task_cpu() –- returns CPU to which task belongs

There are several other useful fields in task_struct:

• mm (pointer to struct mm_struct) refers to a address space of a process. For example,
exe_file (pointer to struct file) refers to executable file, while arg_start and
arg_end are addresses of first and last byte of argv passed to a process respectively

• fs (pointer to struct fs_struct) contains filesystem information: path contains
working directory of a task, root contains root directory (alterable using chroot system
call)

• start_time and real_start_time (represented as struct timespec until 3.17,
replaced with u64 nanosecond timestamps) –- monotonic and real start time of a process.

• files (pointer to struct files_struct) contains table of files opened by process
• utime and stime (cputime_t) contain amount of time spent by CPU in userspace and

kernel respectively. They can be accessed through Task Time tapset.

Script dumptask.stp demonstrates how these fields may be useful to get information
about current process.

Script file scripts/stap/dumptask.stp

/**
 * taskdump.stp

75Module 4: Operating system kernel tracing

task_struct
state
flags

mm

stack

parent

children
sibling
tty
fs

comm

group_leader

real_parent
thread_node task_struct

state

mm
sibling

parent
real_parent

task_struct
state

mm
sibling

parent
real_parent

task_struct
state

mm

group_leader
thread_node

 *
 * Prints information about current task once per second
 * Extracts data from `task_struct`
 *
 * Tested on CentOS 7.0
 */

/**
 * Structures `dentry` and `vfsmnt` were separate in older kernels.
 * Newer kernels feature unified `path` structures that contain them both.
 *
 * SystemTap doesn't cache full path, so we have to use function →
 task_dentry_path(),
 * to get entire path in this manner:
 * dentry = @cast(file, "file")->f_path->dentry;
 * vfsmnt = @cast(file, "file")->f_path->mnt;
 * return task_dentry_path(task, dentry, vfsmnt);
 *
 * Unfortunately, SystemTap has bug 16991, fixed in 2.6, so
 * we limit output to a basename
 */
function file_path:string(task:long, file:long) {
 if(@defined(@cast(file, "file")->f_vfsmnt))
 return d_name(@cast(file, "file")->f_dentry);
 return d_name(@cast(file, "file")->f_path->dentry);
}
function task_root_path:string(task:long, fs_ptr:long) {
 if(@defined(@cast(fs_ptr, "fs_struct")->rootmnt))
 return d_name(@cast(fs_ptr, "fs_struct")->root);
 return d_name(@cast(fs_ptr, "fs_struct")->root->dentry);
}
function task_pwd_path:string(task:long, fs_ptr:long) {
 if(@defined(@cast(fs_ptr, "fs_struct")->pwdmnt))
 return d_name(@cast(fs_ptr, "fs_struct")->pwd);
 return d_name(@cast(fs_ptr, "fs_struct")->pwd->dentry);
}

/**
 * Prints exectuable file name from `mm->exe_file` */
function task_exefile(task:long, mm_ptr:long) {
 if(mm_ptr) {
 printf("\texe: %s\n",
 file_path(task, @cast(mm_ptr, "mm_struct")->exe_file));
 }
}
/**
 * Prints root and current dir of a task */
function task_paths(task:long, fs_ptr:long) {
 if(fs_ptr) {
 printf("\troot: %s\n", task_root_path(task, fs_ptr));
 printf("\tcwd: %s\n", task_pwd_path(task, fs_ptr));
 }
}

/**
 * Prints arguments vector. Arguments are copied into process memory (stack)
 * and located in memory area (mm->arg_start; mm_arg_end), of the strings that
 * separated with NULL-terminators, i.e.:

Module 4: Operating system kernel tracing76

 * +-----+----+-------------+----+
 * | cat | \0 | /etc/passwd | \0 |
 * +-----+----+-------------+----+
 * ^ ^
 * arg_start arg_end
 *
 * WARNING: This is only a demostration functions, use cmdline_*() functions
 * instead
 *
 * NOTE: functions user_string* read from current address space
 * To get arguments from other processes, use Embedded C and
 * function that look like proc_pid_cmdline
 */
function task_args(mm_ptr:long) {
 if(mm_ptr) {
 arg_start = @cast(mm_ptr, "mm_struct")->arg_start;
 arg_end = @cast(mm_ptr, "mm_struct")->arg_end;
 if (arg_start != 0 arg_end != 0)
 {
 len = arg_end - arg_start;
 nr = 0;

 /* Pick first argument */
 arg = user_string2(arg_start, "");
 while (len > 0)
 {
 printf("\targ%d: %s\n", nr, arg);
 arg_len = strlen(arg);
 arg_start += arg_len + 1;
 len -= arg_len + 1;
 nr++;

 arg = user_string2(arg_start, "");
 }
 }
 }
}

/**
 * Returns file descriptor using fd
 * NOTE: see pfiles.stp
 */
function task_fd_filp:long(files:long, fd:long) {
 return @cast(files, "files_struct")->fdt->fd[fd];
}

function task_fds(task:long) {
 task_files = @cast(task, "task_struct", "kernel")->files;

 if(task_files) {
 max_fds = task_max_file_handles(task);

 for (fd = 0; fd start_time)) {
 start_time_sec = @cast(task, "task_struct", "kernel")
 ->start_time->tv_sec;
 real_time_sec = @cast(task, "task_struct", "kernel")
 ->real_time->tv_sec;
 printf("\tstart time: %ds\t real start time: %ds\n", start_time_sec, →

77Module 4: Operating system kernel tracing

 real_time_sec);
 }
 else {
 real_time_sec = @cast(task, "task_struct", "kernel")
 ->real_start_time->tv_sec;
 printf("\treal start time: %ds\n", real_time_sec);
 }

}

/**
 * Prints scheduler stats */
function task_time_stats(task:long) {
 user = @cast(task, "task_struct", "kernel")->utime;
 kernel = @cast(task, "task_struct", "kernel")->stime;
 printf("\tuser: %s\t kernel: %s\n", cputime_to_string(user), →
 cputime_to_string(kernel));
}

function dump_task(task:long) {
 task_mm = @cast(task, "task_struct", "kernel")->mm;
 task_fs = @cast(task, "task_struct", "kernel")->fs;

 printf("Task %p is %d@%d %s\n", task, task_pid(task), task_cpu(task), →
 task_execname(task));

 task_exefile(task, task_mm);
 task_paths(task, task_fs);
 task_args(task_mm);
 task_fds(task);
 task_start_time_x(task);
 task_time_stats(task);
}

probe timer.s(1) {
 dump_task(task_current());
}

Process tree in Solaris

Module 4: Operating system kernel tracing78

Solaris Kernel distinguishes threads and processes: on low level all threads represented by
kthread_t, which are presented to userspace as Light-Weight Processes (or LWPs) defined
as klwp_t. One or multiple LWPs constitute a process proc_t. They all have references to
each other, as shown on the following picture:

Current thread is passed as curthread built-in variable to probes. Solaris proc provider
has lwpsinfo_t and psinfo_t providers that extract useful information from
corresponding thread, process and LWP structures.

Description

Process

psinfo_t field proc_t field

p_exec vnode of executable file

p_as process address space

pr_pid In p_pid of type
struct pid

Information about process ID

pr_uid, pr_gid,
pr_euid, pr_egid

In p_cred of type
struct cred

User and group ID of a process

p_stat Process state

pr_dmodel p_model Data model of a process (32- or 64- bits)

pr_start p_user.u_start,
p_mstart

Start time of process, from epoch

pr_fname p_user.u_comm Executable name

p_user.p_cdir vnode of current process directory

p_user.p_rdir vnode of root process directory

79Module 4: Operating system kernel tracing

proc_t
p_exec
p_as

p_pidp

p_child

p_stat
p_tlist

p_parent

p_sibling
p_psibling

u_start
u_comm
u_cdir
u_rdir
u_finfo

p_user

kthread_t
t_link
t_state

t_mstate

t_tid

t_back
t_forw

t_lwp
t_procp

kthread_t
t_link
t_state

t_mstate

t_tid

t_back
t_forw

t_lwp
t_procp

klwp_t
lwp_pcb
lwp_errno

lwp_procp
lwp_thread

klwp_t
lwp_pcb
lwp_errno

lwp_procp
lwp_thread

proc_t
p_exec

p_child
p_parent

p_sibling
p_nsibling

proc_t
p_exec

p_child
p_parent

p_sibling
p_nsibling

Description

For current process –-
fds pseudo-array

p_user.u_finfo Open file table

Thread / LWP

lwpsinfo_t field kthread_t field Description

pr_lwpid t_tid ID of thread/LWP

pr_state (enumeration)
or pr_sname (letter)

t_state State of the thread –- one of SSLEEP for sleeping,
SRUN for runnable thread, SONPROC for thread that is
currently on process, SZOMB for zombie threads,
SSTOP for stopped threads and SWAIT for threads that
are waiting to be runnable.

pr_stype If process is sleeping on synchronization object
identifiable as wait channel (pr_wchan), this field
contains type of that object, i.e.: SOBJ_MUTEX for
mutexes and SOBJ_CV for condition variables

t_mstate micro-state of thread (see also prstat -m)

Parent process has p_child pointer that refers its first child, while list of children is
doubly-linked list with p_sibling pointer (next) and p_psibling (previous) pointers. Each
child contains p_parent pointer and p_ppid process ID which refers his parent. Threads of
the process is also a doubly-linked list with t_forw (next) and t_prev pointers. Thread
references corresponding LWP with t_lwp pointer and its process with t_procp pointer.
LWP refers to a thread through lwp_thread pointer, and to a process through lwp_procp
pointer.

The following script dumps information about current thread and process. Because DTrace
doesn't support loops and conditions, it can read only first 9 files and 9 arguments and does
that by generating multiple probes with preprocessor.

Script file scripts/dtrace/dumptask.d

#!/usr/sbin/dtrace -qCs

/**
 * dumptask.d
 *
 * Prints information about current task once per second
 * Contains macros to extract data from `kthread_t` and its siblings
 * Some parts use standard translators `psinfo_t` and `lwpsinfo_t*`
 *
 * Tested on Solaris 11.2
 */

int argnum;
void* argvec;
string pargs[int];

int fdnum;
uf_entry_t* fdlist;

#define PSINFO(thread) xlate(thread->t_procp)
#define LWPSINFO(thread) xlate(thread)

#define PUSER(thread) thread->t_procp->p_user

Module 4: Operating system kernel tracing80

/**
 * Extract pointer depending on data model: 8 byte for 64-bit
 * programs and 4 bytes for 32-bit programs.
 */
#define DATAMODEL_ILP32 0x00100000
#define GETPTR(proc, array, idx) \
 ((uintptr_t) ((proc->p_model == DATAMODEL_ILP32) \
 ? ((uint32_t*) array)[idx] : ((uint64_t*) array)[idx]))
#define GETPTRSIZE(proc) \
 ((proc->p_model == DATAMODEL_ILP32)? 4 : 8)

#define FILE(list, num) list[num].uf_file
#define CLOCK_TO_MS(clk) (clk) * (`nsec_per_tick / 1000000)

/* Helper to extract vnode path in safe manner */
#define VPATH(vn) \
 ((vn) == NULL || (vn)->v_path == NULL) \
 ? "unknown" : stringof((vn)->v_path)

/* Prints process root - can be not `/` for zones */
#define DUMP_TASK_ROOT(thread) \
 printf("\troot: %s\n", \
 PUSER(thread).u_rdir == NULL \
 ? "/" \
 : VPATH(PUSER(thread).u_rdir));

/* Prints current working directory of a process */
#define DUMP_TASK_CWD(thread) \
 printf("\tcwd: %s\n", \
 VPATH(PUSER(thread).u_cdir));

/* Prints executable file of a process */
#define DUMP_TASK_EXEFILE(thread) \
 printf("\texe: %s\n", \
 VPATH(thread->t_procp->p_exec));

/* Copy up to 9 process arguments. We use `psinfo_t` tapset to get
 number of arguments, and copy pointers to them into `argvec` array,
 and strings into `pargs` array.

 See also kernel function `exec_args()` */
#define COPYARG(t, n) \
 pargs[n] = (n t_procp, argvec, n)) : "???"
#define DUMP_TASK_ARGS_START(thread) \
 printf("\tpsargs: %s\n", PSINFO(thread)->pr_psargs); \
 argnum = PSINFO(thread)->pr_argc; \
 argvec = (PSINFO(thread)->pr_argv != 0) ? \
 copyin(PSINFO(thread)->pr_argv, \
 argnum * GETPTRSIZE(thread->t_procp)) : 0;\
 COPYARG(thread, 0); COPYARG(thread, 1); COPYARG(thread, 2); \
 COPYARG(thread, 3); COPYARG(thread, 4); COPYARG(thread, 5); \
 COPYARG(thread, 6); COPYARG(thread, 7); COPYARG(thread, 8);

/* Prints start time of process */
#define DUMP_TASK_START_TIME(thread) \
 printf("\tstart time: %ums\n", \
 (unsigned long) thread->t_procp->p_mstart / 1000000);

81Module 4: Operating system kernel tracing

/* Processor time used by a process. Only for conformance
 with dumptask.d, it is actually set when process exits */
#define DUMP_TASK_TIME_STATS(thread) \
 printf("\tuser: %ldms\t kernel: %ldms\n", \
 CLOCK_TO_MS(thread->t_procp->p_utime), \
 CLOCK_TO_MS(thread->t_procp->p_stime));

#define DUMP_TASK_FDS_START(thread) \
 fdlist = PUSER(thread).u_finfo.fi_list; \
 fdcnt = 0; \
 fdnum = PUSER(thread).u_finfo.fi_nfiles;

#define DUMP_TASK(thread) \
 printf("Task %p is %d/%d@%d %s\n", thread, \
 PSINFO(thread)->pr_pid, \
 LWPSINFO(thread)->pr_lwpid, \
 LWPSINFO(thread)->pr_onpro, \
 PUSER(thread).u_comm); \
 DUMP_TASK_EXEFILE(thread) \
 DUMP_TASK_ROOT(thread) \
 DUMP_TASK_CWD(thread) \
 DUMP_TASK_ARGS_START(thread) \
 DUMP_TASK_FDS_START(thread) \
 DUMP_TASK_START_TIME(thread) \
 DUMP_TASK_TIME_STATS(thread)

#define _DUMP_ARG_PROBE(probe, argi) \
probe /argi f_vnode)); }
#define DUMP_FILE_PROBE(probe) \
 _DUMP_FILE_PROBE(probe, 0) _DUMP_FILE_PROBE(probe, 1) \
 _DUMP_FILE_PROBE(probe, 2) _DUMP_FILE_PROBE(probe, 3) \
 _DUMP_FILE_PROBE(probe, 4) _DUMP_FILE_PROBE(probe, 5) \
 _DUMP_FILE_PROBE(probe, 6) _DUMP_FILE_PROBE(probe, 7)

BEGIN {
 proc = 0;
 argnum = 0;
 fdnum = 0;
}

tick-1s {
 DUMP_TASK(curthread);
}

DUMP_ARG_PROBE(tick-1s)
DUMP_FILE_PROBE(tick-1s)

Warning

psinfo_t provider features pr_psargs field that contains first 80 characters of process arguments. This script
uses direct extraction of arguments only for demonstration purposes and to be conformant with dumptask.stp.
Like in SystemTap case, this approach doesn't allow to read non-current process arguments.

Module 4: Operating system kernel tracing82

Lifetime of a process

Lifetime of a process and corresponding probes are shown in the following image:

Unlike Windows, in Unix process is spawned in two stages:

• Parent process calls fork() system call. Kernel creates exact copy of a parent process
including address space (which is available in copy-on-write mode) and open files, and gives
it a new PID. If fork() is successful, it will return in the context of two processes (parent
and child), with the same instruction pointer. Following code usually closes files in child,
resets signals, etc.

• Child process calls execve() system call, which replaces address space of a process
with a new one based on binary which is passed to execve() call.

Warning

There is a simpler call, vfork(), which will not cause copying of an address space and make it a bit more
efficient. Linux features universal clone() call which allows to choose which features of a process should be
cloned, but in the end, all these calls are wrappers for do_fork() function.

When child process finishes its job, it will call exit() system call. However, process may
be killed by a kernel due to incorrect condition (like triggering kernel oops) or machine fault.
If parent wants to wait until child process finishes, it will call wait() system call (or
waitid() and similar calls), which will stop parent from executing until child exits. wait()
call also receives process exit code, so only after that corresponding task_struct will be
destroyed. If no process waits on a child, and child is exited, it will be treated as zombie
process. Parent process may be also notified by kernel with SIGCHLD signal.

Processes may be traced with kprocess and scheduler tapsets in SystemTap, or DTrace proc
provider. System calls may be traced with appropriate probes too. Here are some useful
probes:

Action DTrace SystemTap

Process creation proc:::create • kprocess.create
• scheduler.process_fork

83Module 4: Operating system kernel tracing

fork()

exit()

exec()

wait()

SIGCHLD

kprocess.exec
proc:::exec

scheduler.process_fork
kprocess.create
proc:::create

kprocess.start
proc:::start

kprocess.exec_complete
proc:::exec-success
proc:::exec-failure

scheduler.process_free
kprocess.release

scheduler.process_exit
kprocess.exit
proc:::exit

Action DTrace SystemTap

Forked process begins its
execution

• proc:::start –- called in
new process context

• kprocess.start –- called in a
new process context

• scheduler.wakeup_new –-
process has been dispatched onto CPU
first time

execve() • proc:::exec –- entering
execve()

• proc:::exec-success –-
execve() finished successfully

• proc:::exec-failure –-
execve() has failed, args[0]
contains errno

• kprocess.exec –- entering
execve()

• kprocess.exec_complete –-
execve() has been completed,
success variable has true-value if
completed successfully, errno variable
has error number in case of error

Process finished • process::exit –- process
exited normally via exit() syscall

• process::fault –- process
has been terminated due to fault

• kprocess.exit
• scheduler.process_exit

Process structures
deallocated due to
wait()/SIGCHLD

- • kprocess.release
• scheduler.process_free

LWP management • proc:::lwp-create
• proc:::lwp-start
• proc:::lwp-exit

LWPs are not supported in Linux

These probes are demonstrated in the following scripts.

Script file scripts/stap/proc.stp

#!/usr/bin/stap

probe scheduler.process*, scheduler.wakeup_new, syscall.fork,
 syscall.exec*, syscall.exit, syscall.wait*, kprocess.* {
 printf("%6d[%8s]/%6d[%8s] %s\n",
 pid(), execname(), ppid(), pid2execname(ppid()), pn());
}

probe scheduler.process_fork {
 printf("\tPID: %d -> %d\n", parent_pid, child_pid);
}

probe kprocess.exec {
 printf("\tfilename: %s\n", filename);
}

probe kprocess.exit {
 printf("\treturn code: %d\n", code);
}

Running this script for uname program called in foreground of bash shell gives following
output:
2578[bash]/ 2576[sshd] syscall.fork
2578[bash]/ 2576[sshd] kprocess.create
2578[bash]/ 2576[sshd] scheduler.process_fork
 PID: 2578 -> 3342
2578[bash]/ 2576[sshd] scheduler.wakeup_new

Module 4: Operating system kernel tracing84

3342[bash]/ 2578[bash] kprocess.start
2578[bash]/ 2576[sshd] syscall.wait4
2578[bash]/ 2576[sshd] scheduler.process_wait
 filename: /bin/uname
3342[bash]/ 2578[bash] kprocess.exec
3342[bash]/ 2578[bash] syscall.execve
3342[uname]/ 2578[bash] kprocess.exec_complete
 return code: 0
3342[uname]/ 2578[bash] kprocess.exit
3342[uname]/ 2578[bash] syscall.exit
3342[uname]/ 2578[bash] scheduler.process_exit
2578[bash]/ 2576[sshd] kprocess.release

Script file scripts/dtrace/proc.d

#!/usr/sbin/dtrace -qCs

#define PARENT_EXECNAME(thread) \
 (thread->t_procp->p_parent != NULL) \
 ? stringof(thread->t_procp->p_parent->p_user.u_comm) \
 : "???"

proc:::, syscall::fork*:entry, syscall::exec*:entry,
 syscall::wait*:entry {
 printf("%6d[%8s]/%6d[%8s] %s::%s:%s\n",
 pid, execname, ppid, PARENT_EXECNAME(curthread),
 probeprov, probefunc, probename);
}

proc:::create {
 printf("\tPID: %d -> %d\n", curpsinfo->pr_pid, args[0]->pr_pid);
}

proc:::exec {
 printf("\tfilename: %s\n", args[0]);
}

proc:::exit {
 printf("\treturn code: %d\n", args[0]);
}

DTrace will give similar outputs, but also will reveal LWP creation/destruction:
16729[bash]/ 16728[sshd] syscall::forksys:entry
 16729[bash]/ 16728[sshd] proc::lwp_create:lwp-create
 16729[bash]/ 16728[sshd] proc::cfork:create
 PID: 16729 -> 17156
 16729[bash]/ 16728[sshd] syscall::waitsys:entry
 17156[bash]/ 16729[bash] proc::lwp_rtt_initial:start
 17156[bash]/ 16729[bash] proc::lwp_rtt_initial:lwp-start
 17156[bash]/ 16729[bash] syscall::exece:entry
 17156[bash]/ 16729[bash] proc::exec_common:exec
 filename: /usr/sbin/uname
 17156[uname]/ 16729[bash] proc::exec_common:exec-success
 17156[uname]/ 16729[bash] proc::proc_exit:lwp-exit
 17156[uname]/ 16729[bash] proc::proc_exit:exit
 return code: 1
 0[sched]/ 0[???] proc::sigtoproc:signal-send

85Module 4: Operating system kernel tracing

References

• Context Functions
• Task Time Tapset
• Kernel Process Tapset
• Scheduler Tapset
• proc Provider

Exercise 3

Part 1

Modify dumptask.stp and dumptask.d so it will print information on successful binary
load by execve() and before process exit. Write a simple program lab3.c:

Script file scripts/src/lab3.c

#include
#include
#include

int main(int argc, char* argv[]) {
 while(--argc > 0) {
 memset(argv[argc], 'X', strlen(argv[argc]));
 }

 open("/etc/passwd", O_RDONLY);
 return 0;
}

Compile it with GCC:
gcc lab3.c -o lab3

Run changed scripts and run your program in different ways:

• Run it with argument:
./lab3 arg1

• Create a symbolic link and run a program through it:
ln -s lab3 lab3-1
./lab3-1

• Created chrooted environment and run lab3 inside it:
mkdir -p /tmp/chroot/bin /tmp/chroot/lib64 /tmp/chroot/lib
mount --bind /lib64 /tmp/chroot/lib64 (in Linux)
mount -F lofs /lib /tmp/chroot/lib (in Solaris)
cp lab3 /tmp/chroot/bin
chroot /tmp/chroot/ /bin/lab3

Q: What data output has been changed? Try to explain these changes.

Module 4: Operating system kernel tracing86

https://sourceware.org/systemtap/tapsets/context_stp.html
https://sourceware.org/systemtap/tapsets/task_time_stp.html
https://sourceware.org/systemtap/tapsets/kprocess.stp.html
https://sourceware.org/systemtap/tapsets/sched.stp.html
http://docs.oracle.com/cd/E19253-01/817-6223/chp-proc/index.html

Part 2

Shell scripts have overhead caused by need to spawn new processes for basic operations,
and thus calling fork() and execve(). Write SystemTap and DTrace scripts that measure
following characteristics:

• time, spent for fork() and execve() system calls;
• time, spent for child process initialization in userspace: closing files and resetting signals

–- it is time interval between finish of fork() call in child context and calling of execve();
• own program time after it was loaded with execve() and before it was exited.

To be more correct, we should also measure time spent by ld.so loader and subtract it
from own program time, but it involves complex tracing of userspace, so we leave it out of
the scope of this exercise.

Measure all time periods in microseconds and save them to an aggregations using process
executable name and its program arguments.

Use proc_starter experiment to demonstrate written script. This module starts sh shell
(which can be overridden with shell parameter), uses PS1 environment variable to reset
prompt, and simulates real user entering commands by passing them through
pseudo-terminal. Commands are represented as probability map command.

Process scheduler
Definition

Process scheduler is a key component of modern multitasking operating systems which distributes processor
time between several tasks. Because time periods allocated to programs is relatively small to be noticed by
human (milliseconds), that creates an illusion of parallel execution or concurrent execution.

Definition

When scheduler decides that one task should leave CPU to run another one, scheduler calls a dispatcher that
performs a context switch. Context switch changes current/curthread pointer so when mode switched back to
userspace, new task will be picked with appropriate address space and registers values. If context switches are
rare, that can cause task starvation and user can notice that system become unresponsive, of context switches
are too often, TLB will be cleared too often, caches will be cold, so performance will degrade, so picking an
optimal timeslice allocated to a task is a hard choice.

In Solaris functions of the scheduler is invoked through swtch() function, in Linux
through schedule() functions and set of derivatives like cond_resched().

87Module 4: Operating system kernel tracing

Process lifetime in terms of the scheduler is shown on the following picture.

In scheduler, context switching may be split in two steps:

• Current task leaves CPU. This event is traceable as sched:::off-cpu in DTrace or
scheduler.cpu_off in SystemTap. This may be caused by many reasons:

• Task was blocked on kernel synchronisation object (6), for example due to call to
poll() and waiting network data. In this case task is put into sleep queue related to that
synchronisation object. It would later be unblocked by another task (7), thus being put back
to run-queue.

• Task is voluntary gives control to a scheduler by calling yield() call (3)
• Task has been exhausted its timeslice or task with higher priority has been added to a

run queue (or a new, forked process added to queue), which is called preemptiveness. Usually
timeslice is checked by system timer, which is traceable as sched:::tick probe in DTrace
or scheduler.tick. (3) Some system calls and interrupts may also trigger context switch.

• New task is picked to be run on CPU (2). When CPU resumes from kernel mode,
interrupt or system call, it changes context to a new task, like in resume() low-level routine
of Solaris. Context switch may be traced in SystemTap with scheduler.ctxswitch probe.

OS creates at least one run-queue per CPU in SMP systems. When some CPU prepares to
become idle, it may check run-queues of other CPUs and steal task from it, thus task
migrates (5) between CPUs. This allows to balance tasks across CPUs, but other factors like
NUMA locality of process memory, cache hotness should be taken into account. Migration
may be tracked by with scheduler.migrate probe in SystemTap. DTrace doesn't provide
special probe for that, but it may be tracked comparing CPU ids in on-cpu and off-cpu
probes:
dtrace -n '
 sched:::off-cpu {
 self->cpu = cpu; }
 sched:::on-cpu
 /self->cpu != cpu/
 {
 /* Migration */ } '

Usually task is blocked on various synchronisation objects waiting for data available for
processing, i.e. accept() will block until client will connect and recv() will block until
client will send new data. There is no need to use a processor when no data is available, so

Module 4: Operating system kernel tracing88

CPU

CPU

Run
queue

Sleep
(wait)

 queues

444

1 1 2

3

6

7

5

new process

task simply leaves CPU and being put to a special sleep queue related to that object. Speaking
of accept() call, it would be so_acceptq_cv condition variable in kernel socket object
(sonode) in Solaris and sk_wq wait queue wrapper in Linux object sock. We will cover
synchronisation objects in detail later in section Synchronisation objects.

Solaris has dedicated probes for sleeping and awoken processes: sched:::sleep and
sched:::wakeup correspondingly which may be used like this:
dtrace -n '
 sched:::sleep {
 printf("%s[%d] sleeping", execname, pid);
 }
 sched:::wakeup {
 printf("%s[%d] wakes up %s[%d]", execname, pid,
 args[1]->pr_fname, args[1]->pr_pid); }' | grep cat

Note that wakeup process is called in context of process which initiates task unblocking.

SystemTap provides scheduler.wakeup probe for process that return to a run-queue, but
has no special probe for sleeping process. The most correct way to do that is to trace
schedule() calls and task state transitions: task should change its state from TASK_RUNNING
to a TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE. In following example, however, we
will use much simpler approach: most sleep queues are implemented as wait queues in Linux,
so we will trace corresponding call, add_wait_queue() that puts task onto queue:
stap -e '
 probe kernel.function("add_wait_queue") {
 printf("%s[%d] sleeping\n", execname(), pid());
 }
 probe scheduler.wakeup {
 printf("%s[%d] wakes up %s[%d]\n", execname(), pid(),
 pid2execname(task_pid), task_pid); }' | grep cat

These examples may be tested with the following simple one-liner:
bash -c 'while : ; do echo e ; sleep 0.5 ; done ' | cat

When dispatcher puts task onto queue, it is called enqueuing (4), when it removes it from
queue, it is called dequeuing (1). DTrace has probes sched:::enqueue and
sched:::dequeue. SystemTap doesn't have these probes, but you may trace
enqueue_task() and dequeue_task() for that.

As we mentioned before, purpose of the scheduler is to distribute time between tasks. To do
that, it prioritizes tasks, so to pick a task for execution it may create multiple queues (one for
each priority level), than walk over these queues and pick first task with top-level priority.
Such approach is called cyclic planning. Fair planning, on contrary, is concerned about time
consumption by difference threads, processes, users and even services (which are all
considered as scheduling entities), and try to balance available processor time fairly.

Scheduling in Solaris

Solaris implements cyclic scheduling, but it support fair scheduling algorithms via FSS (fair
share scheduling) class. Each thread in Solaris may have priority from 0 to 170 which is
saved in t_pri field of kthread_t. Each thread has its own scheduler class, which may have
different algorithms for allocating timeslices, prioritizing threads. Generic API for scheduler
class is provided as t_clfuncs field of thread where each field is a pointer to a
corresponding function, while specific scheduler data is kept under t_cldata field.

The following table shows scheduler classes implemented in Solaris.
89Module 4: Operating system kernel tracing

Class Priority
range

Description

- 160-169 Interrupt threads (they are not handled by scheduler explicitly).

RT 100-159 RealTime processes and threads.

SYS 60-99 SYStem –- for kernel threads which always have precedence over user
processes. Also, timeslices are allocated to them, they consume as much
processor time as they can.

SYSDC 0-99 SYStem Duty Cycles –- for CPU-bound kernel threads like ZFS pipeline
(which involves encryption and compression). This class is implemented to
prevent userspace starvation under heavy I/O load.

TS and IA 0-59 Time Sharing and InterActive –- default classes for userspace processes. TS
class has dynamic priorities: if thread had consumed entire timeslice, its
priority is reduced to give room to other threads. IA is a modification of TS
class which also adds small "boost" (usually, 10 priorities) for processes
which have focused window (useful for graphics stations).

FX 0-59 FiXed –- unlike TS/IA, such processes never change their priorities unless
it is done by user themself.

FSS 0-59 Fair Share Scheduler –- allows to distribute processor time proportionally
between groups of processes such as zones or projects.

Solaris dispatcher control structures are shown on the following picture:

Each processor has corresponding cpu_t structure, which includes two pointers to threads:
cpu_dispthread –- a thread chosen by scheduler to be the next process after resume, and
cpu_thread –- process which is currently is on CPU. cpu_last_swtch contains time of last
context switch in lbolts (changed into high-resolution time in nanoseconds in Solaris 11).
Each cpu_t has dispatcher queue represented by disp_t structure and corresponding array
of queue heads of type dispq_t. Each queue head has links to first and last thread in queue
(kthread_t objects are linked through t_link pointer) and dq_sruncnt –- number of
threads in this queue.

disp_t refers queues through disp_q pointer which refers first queue with priority 0 and
disp_q_limit which points one entry beyound array of dispatcher queues. disp_qactmap

Module 4: Operating system kernel tracing90

dq_first
dq_last

dq_sruncnt

dispq_t

dq_first
dq_last

dq_sruncnt

kthread_t
t_pri
t_link

t_cldata
t_clfuncs

ts_timeleft
ts_flags

ts_boost

tsproc_t

ts_cpupri
ts_upri

...

dq_first
dq_last

dq_sruncnt

kthread_t
t_pri
t_link

t_cldata
t_clfuncs

disp_t
disp_npri
disp_q

disp_cpu

disp_q_limit

disp_maxrunpri
disp_qactmap

disp_max_unbound_pri
disp_nrunnable

cpu_t
cpu_disp
cpu_runrun

cpu_last_swtch

cpu_kprunrun

cpu_dispthread
cpu_chosen_level

cpu_thread

contains bitmap of queues that have active processes at the moment. disp_npri is the
number of priorities serviced by this dispatcher object –- it should be 160. disp_maxrunpri
contains maximum priority of a thread in this dispatcher object –- it will be top-most queue
which has active processes and when thread will be switched, this queue will be checked
first. disp_max_unbound_pri also contains maximum priority of a thread, but only for a
thread that is not bound to a corresponding processor and thus may be considered a candidate
for task-stealing by free CPUs. Finally, disp_nrunnable has total number of runnable
threads which is serviced by this dispatcher object.

Warning

Newer Solaris 11 versions use hrtime_t type for cpu_last_swtch (high-resolution unscaled time).

By default Solaris userspace processes use TS scheduler, so let's look into it. Key parameter
that used in it is ts_timeleft which keeps remaining thread timeslice. Initial value of
ts_timeleft is taken from table ts_dptbl from field ts_quantum. Each row in that table
matches priority level, so processes with lower priorities will have larger quantums (because
they will get CPU rarely). You can check that table and override its values with dispadmin
command, for example:
dispadmin -c TS -g

Priority is also set dynamically in TS scheduler: if thread will exhaust its timeslice, its
priority will be lowered according to ts_tqexp field, and if it will be awaken after sleep, it
will get ts_slpret priority. Modern Solaris systems were replaced ts_timeleft with
ts_timer (for non-kernel threads those have TSKPRI flag is set).

Tracer for TS scheduler is available in the following listing:

Script file scripts/dtrace/tstrace.d

#!/usr/sbin/dtrace -qCs
/**
 tstrace.d - traces Solaris dispatcher (and prints some TS information)
 Usage: tstrace.d
 Note: Use -DSOLARIS10 on Solaris 10

 Tested on Solaris 11.2
*/

string classnames[struct thread_ops*];
int disp_spec;
int disp_commit;

/* Converts time from t_disp_time/cpu_last_swtch to nanoseconds
 - Solaris 10 uses system ticks (lbolts)
 - Solaris 11 uses unscaled hrtime_t
 HRT_CONVERT converts unscaled time to nanoseconds
 HRT_DELTA substracts system time from its argument */
#ifdef SOLARIS10
define HRT_DELTA(ns) (`nsec_per_tick * (`lbolt64 - (ns)))
#else
define __HRT_CONVERT(ts) \
 (((ts >> (32 - NSEC_SHIFT)) * NSEC_SCALE) + \
 ((((ts > 32))
if defined(__i386) || defined(__amd64)
define NSEC_SHIFT 5
define NSEC_SCALE `hrt->nsec_scale

91Module 4: Operating system kernel tracing

define HRT_CONVERT(ts) \
 ((`tsc_gethrtime_enable) ? __HRT_CONVERT(ts) : ts)
elif defined(__sparc)
define NANOSEC 1000000000
define NSEC_SHIFT 4
define NSEC_SCALE \
 ((uint64_t)((NANOSEC HRT_CONVERT(ns)) ? timestamp - →
 HRT_CONVERT(ns) : 0)
#endif

#define TSINFO(t) ((tsproc_t*) (t->t_cldata))
#define KTHREAD(t) ((kthread_t*) (t))
#define KTHREADCPU(t) ((kthread_t*) (t))->t_cpu->cpu_id
#define PSINFO(thread) xlate(thread->t_procp)

#define TSKPRI 0x01
#define TSBACKQ 0x02
#define TSIA 0x04
/* We ignore TSIA* flags here */
#define TSRESTORE 0x20

/* TSFLAGSSTR creates string represenation for TS flags */
#define TSFLAGS(t) (TSINFO(t)->ts_flags)
#define TSFLAGSSTR(t) \
 strjoin(\
 strjoin(\
 (TSFLAGS(t) TSKPRI) ? "TSKPRI|" : "", \
 (TSFLAGS(t) TSBACKQ) ? "TSBACKQ|" : ""), \
 strjoin(\
 (TSFLAGS(t) TSIA) ? "TSIA|" : "", \
 (TSFLAGS(t) TSRESTORE) ? "TSRESTORE" : ""))

/* Returns true value if thread belongs to TS or IA class */
#define ISTSTHREAD(t) \
 ((t->t_clfuncs == `ts_classfuncs.thread) || \
 (t->t_clfuncs == `ia_classfuncs.thread))

#define TCLNAME(t_clfuncs) classnames[t_clfuncs]

#define DUMP_KTHREAD_INFO(hdr, thread) \
 printf("\t%s t: %p %s[%d]/%d %s pri: %d\n", hdr, thread, \
 PSINFO(thread)->pr_fname, PSINFO(thread)->pr_pid, thread->t_tid, \
 TCLNAME(thread->t_clfuncs), thread->t_pri)

#define DUMP_DISP_INFO(disp) \
 printf("\tDISP: nrun: %d npri: %d max: %d(%d)\n", \
 (disp)->disp_nrunnable, (disp)->disp_npri, \
 (disp)->disp_maxrunpri, (disp)->disp_max_unbound_pri) \

#define DUMP_CPU_INFO(cpup) \
 this->delta = HRT_DELTA((cpup)->cpu_last_swtch); \
 printf("\tCPU : last switch: T-%dus rr: %d kprr: %d\n", \
 this->delta / 1000, (cpup)->cpu_runrun, (cpup)->cpu_kprunrun); \
 DUMP_KTHREAD_INFO("\tcurrent", (cpup)->cpu_thread); \
 DUMP_KTHREAD_INFO("\tdisp ", (cpup)->cpu_dispthread); \
 DUMP_DISP_INFO(cpup->cpu_disp)

#define TS_QUANTUM_LEFT(tspp) \
Module 4: Operating system kernel tracing92

 ((tspp)->ts_flags TSKPRI) \
 ? (tspp)->ts_timeleft \
 : (tspp)->ts_timer - (tspp)->ts_lwp->lwp_ac.ac_clock

#define DUMP_TSPROC_INFO(thread) \
 printf("\tTS: timeleft: %d flags: %s cpupri: %d upri: %d boost: %d => →
 %d\n", \
 TS_QUANTUM_LEFT(TSINFO(thread)), TSFLAGSSTR(thread), \
 TSINFO(thread)->ts_cpupri, TSINFO(thread)->ts_upri, \
 TSINFO(thread)->ts_boost, TSINFO(thread)->ts_scpri)

BEGIN {
 printf("Tracing CPU%d...\n", $1);

 classnames[`ts_classfuncs.thread] = "TS";
 classnames[`ia_classfuncs.thread] = "IA";
 classnames[`sys_classfuncs.thread] = "SYS";
 classnames[`fx_classfuncs.thread] = "FX";
 /* classnames[`rt_classfuncs.thread] = "RT"; */
 classnames[`sysdc_classfuncs.thread] = "SDC";
}

/* Helper functions tracer
 cpu_surrender - called when thread leaves CPU
 setbackdq - called when thread is put onto queue tail
 setfrontdq - called when thread is put onto disp queue head */
fbt::cpu_surrender:entry
/cpu == $1/ {
 DUMP_KTHREAD_INFO("cpu_surrender", KTHREAD(arg0));
}

fbt::set*dq:entry
/KTHREADCPU(arg0) == $1 ISTSTHREAD(KTHREAD(arg0))/ {
 printf("=> %s \n", probefunc);
 DUMP_KTHREAD_INFO(probefunc, KTHREAD(arg0));
 DUMP_TSPROC_INFO(KTHREAD(arg0));
}

/* Man dispatcher function disp(). Uses speculations so only when
 TS thread moves onto CPU or/and leaves it, data will be printed. */
fbt::disp:entry
/cpu == $1/ {
 disp_spec = speculation();
 disp_commit = 0;

 speculate(disp_spec);
 printf("=> disp \n");
 DUMP_CPU_INFO(`cpu[$1]);
}

fbt::disp:entry
/cpu == $1/ {
 speculate(disp_spec); DUMP_KTHREAD_INFO("curthread: ", curthread);
}

fbt::disp:entry
/cpu == $1 ISTSTHREAD(curthread)/ {
 speculate(disp_spec); DUMP_TSPROC_INFO(curthread);

93Module 4: Operating system kernel tracing

 disp_commit = 1;
}

fbt::disp:return
/cpu == $1/ {
 speculate(disp_spec); DUMP_KTHREAD_INFO("disp", KTHREAD(arg1));
}

fbt::disp:return
/cpu == $1 ISTSTHREAD(KTHREAD(arg1))/ {
 speculate(disp_spec); DUMP_TSPROC_INFO(KTHREAD(arg1));
 disp_commit = 1;
}

fbt::disp:return
/cpu == $1 disp_commit/ {
 commit(disp_spec);
}

fbt::disp:return
/cpu == $1 !disp_commit/ {
 discard(disp_spec);
}

/* System tick function clock_tick -- reflects changes in
 thread and CPU parameters after tick */
sched:::tick
/cpu == $1 ISTSTHREAD(KTHREAD(arg0))/ {
 printf("=> clock_tick \n");
 DUMP_CPU_INFO(`cpu[$1]);
 DUMP_KTHREAD_INFO("clock_tick", KTHREAD(arg0));
 DUMP_TSPROC_INFO(KTHREAD(arg0));
}

/* Trace for wakeups -- traces awoken thread */
sched:::wakeup
/KTHREADCPU(arg0) == $1 ISTSTHREAD(KTHREAD(arg0))/ {
 printf("=> %s [wakeup] \n", probefunc);
 DUMP_CPU_INFO(`cpu[$1]);
 DUMP_KTHREAD_INFO("wakeup", KTHREAD(arg0));
 DUMP_TSPROC_INFO(KTHREAD(arg0));
}

Let's demonstrate some of TS features live. To do that we will conduct two TSLoad
experiments: duality and concurrency. In first experiment, duality, we will create two
different types of threads: workers which will occupy all available processor resources, while
manager will rarely wakeup (i.e. to queue some work possibly and report to user), so it
should be immediately dispatched. In our example manager had LWPID=7 while worker had
LWPID=5. Experiment configuration is shown in the following file:

Script file experiments/duality/experiment.json

{
 "name": "duality",
 "steps": {
 "manager": {
 "num_steps": 20,
 "num_requests": 20,

Module 4: Operating system kernel tracing94

 },
 "worker": {
 "num_steps": 20,
 "num_requests": 20,
 }
 },
 "threadpools": {
 "tp_manager": {
 "num_threads": 1,
 "quantum": 1000000000,
 "disp": {
 "type": "round-robin"
 },
 "sched" : [
 { "wid": 0,
 "objects": ["strand:0:0:0"] }
]
 },
 "tp_worker": {
 "num_threads": 1,
 "quantum": 1000000000,
 "disp": {
 "type": "benchmark"
 },
 "sched" : [
 { "wid": 0,
 "objects": ["strand:0:0:0"] }
]
 }
 },
 "workloads" : {
 "manager": {
 "wltype": "busy_wait",
 "threadpool": "tp_manager",
 "rqsched": {
 "type": "iat",
 "distribution": "exponential"
 },
 "params": { "num_cycles": 800000 }
 },
 "worker": {
 "wltype": "busy_wait",
 "threadpool": "tp_worker",
 "rqsched": { "type": "simple" },
 "params": { "num_cycles": 4000000 }
 }
 }
}

Here is sample output for duality experiment (some output was omitted):
=> cv_unsleep [wakeup]
 CPU : last switch: T-50073us rr: 0 kprr: 0
 wakeup t: ffffc100054f13e0 tsexperiment[1422]/7 TS pri: 59
=> setbackdq
 setbackdq t: ffffc100054f13e0 tsexperiment[1422]/7 TS pri: 59
=> setfrontdq
 setfrontdq t: ffffc10005e90ba0 tsexperiment[1422]/5 TS pri: 0

95Module 4: Operating system kernel tracing

=> disp
 CPU : last switch: T-50140us rr: 1 kprr: 0
 current t: ffffc10005e90ba0 tsexperiment[1422]/5 TS pri: 0
 disp t: ffffc10005e90ba0 tsexperiment[1422]/5 TS pri: 0
 DISP: nrun: 2 npri: 170 max: 59(65535)
 curthread: t: ffffc10005e90ba0 tsexperiment[1422]/5 TS pri: 0
 TS: timeleft: 19 flags: cpupri: 0 upri: 0 boost: 0 => 0
 disp t: ffffc100054f13e0 tsexperiment[1422]/7 TS pri: 59
 TS: timeleft: 3 flags: cpupri: 59 upri: 0 boost: 0 => 0
=> disp
 CPU : last switch: T-1804us rr: 0 kprr: 0
 current t: ffffc100054f13e0 tsexperiment[1422]/7 TS pri: 59
 disp t: ffffc100054f13e0 tsexperiment[1422]/7 TS pri: 59
 DISP: nrun: 1 npri: 170 max: 0(65535)
 curthread: t: ffffc100054f13e0 tsexperiment[1422]/7 TS pri: 59
 disp t: ffffc10005e90ba0 tsexperiment[1422]/5 TS pri: 0

Note that when manager wokes up, it has maximum priority: 59 but being put to the queue
tail. After that worker thread is being queued because cpu_runrun flag is being set (note rr
change), number of runnable processes increases up to two. After 1.8 ms manager surrenders
from CPU, and worker regains control of it.

In the concurrency experiment, on the opposite we will have two threads with equal rights:
they both will occupy as much CPU as they can get thus being worker processes. Experiment
configuration is shown in the following file:

Script file experiments/concurrency/experiment.json

{
 "name": "concurrency",
 "steps": {
 "worker": {
 "num_steps": 20,
 "num_requests": 40,
 }
 },
 "threadpools": {
 "tp_worker": {
 "num_threads": 2,
 "quantum": 1000000000,
 "disp": {
 "type": "benchmark"
 },
 "sched" : [
 { "wid": "all",
 "objects": ["strand:0:0:0"] }
]
 }
 },
 "workloads" : {
 "worker": {
 "wltype": "busy_wait",
 "threadpool": "tp_worker",
 "rqsched": { "type": "simple" },
 "params": { "num_cycles": 4000000 }
 }
 }
}

Module 4: Operating system kernel tracing96

Here is sample output for concurrency experiment (some output was omitted):
=> disp
 CPU : last switch: T-39971us rr: 1 kprr: 0
 current t: ffffc10009711800 tsexperiment[1391]/6 TS pri: 40
 disp t: ffffc10009711800 tsexperiment[1391]/6 TS pri: 40
 DISP: nrun: 2 npri: 170 max: 40(65535)
 curthread: t: ffffc10009711800 tsexperiment[1391]/6 TS pri: 40
 TS: timeleft: 4 flags: cpupri: 40 upri: 0 boost: 0 => 0
 disp t: ffffc10005c07420 tsexperiment[1391]/5 TS pri: 40
 TS: timeleft: 4 flags: cpupri: 40 upri: 0 boost: 0 => 0
=> clock_tick
 clock_tick t: ffffc10005c07420 tsexperiment[1391]/5 TS pri: 40
 TS: timeleft: 3 flags: cpupri: 40 upri: 0 boost: 0 => 0
=> clock_tick
 clock_tick t: ffffc10005c07420 tsexperiment[1391]/5 TS pri: 40
 TS: timeleft: 2 flags: cpupri: 40 upri: 0 boost: 0 => 0
=> clock_tick
 clock_tick t: ffffc10005c07420 tsexperiment[1391]/5 TS pri: 40
 TS: timeleft: 1 flags: cpupri: 40 upri: 0 boost: 0 => 0
 cpu_surrender t: ffffc10005c07420 tsexperiment[1391]/5 TS pri: 30
=> clock_tick
 clock_tick t: ffffc10005c07420 tsexperiment[1391]/5 TS pri: 30
 TS: timeleft: 0 flags: TSBACKQ| cpupri: 30 upri: 0 boost: 0 => 0
=> setbackdq
 setbackdq t: ffffc10005c07420 tsexperiment[1391]/5 TS pri: 30
 TS: timeleft: 8 flags: cpupri: 30 upri: 0 boost: 0 => 0
=> disp
 curthread: t: ffffc10005c07420 tsexperiment[1391]/5 TS pri: 30
 TS: timeleft: 8 flags: cpupri: 30 upri: 0 boost: 0 => 0
 disp t: fffffffc80389c00 sched[0]/0 SYS pri: 60
=> disp
 curthread: t: fffffffc80389c00 sched[0]/0 SYS pri: 60
 disp t: ffffc10009711800 tsexperiment[1391]/6 TS pri: 40
 TS: timeleft: 4 flags: cpupri: 40 upri: 0 boost: 0 => 0

Note how timeleft field is changing: it is calculated as ts_timer -
ts_lwp->lwp_ac.ac_clock. After each clock tick latter is incremented thus timeleft is
decrementing. When timeleft becomes 0, it means that worker has exhausted scheduler
quantum, so its priority falls from 40 to 30 and it is being put to the tail of corresponding
dispatcher queue. After that sched thread runs for a short time (which is some kernel thread
managed by SYS scheduler), and eventually another worker thread gets on CPU.

Scheduling in Linux

Cyclic scheduling was implemented in Linux O(1) scheduler, but it was replaced with
Completely Fair Scheduler (CFS) scheduler in 2.6.22 kernel. Cyclic scheduling is represented
by RT class which is rarely used. There are also some non-default schedulers like BFS which
are not available in vanilla kernel but shipped as separate patches. Each task_struct has
field policy which determines which scheduler class will be used for it. Policies are shown
in the following table:

Priority Class Policy Description

1 stop - Special class for stopped CPUs. Such CPUs cannot execute any
threads.

97Module 4: Operating system kernel tracing

Priority Class Policy Description

2 rt SCHED_RR Implements cyclic scheduling using round-robin or FIFO
policiesSCHED_FIFO

3 fair
(CFS)

SCHED_NORMAL
(SCHED_OTHER)

Default policy for most kernel and user threads

SCHED_BATCH Similar to SCHED_NORMAL, but process which was recently waken
up won't try to dispatch on CPU which is more fittful for batch
tasks

4 idle SCHED_IDLE Idle threads –- picked only when other classes do not have
runnbalbe threads.

Information

Consider the following situation: there are currently two users on a 8-CPU host where user dima had run make
-j8 and another user, say myaut, had run make -j4. To maintain fairness so users dima and myaut will get equal
amount of CPU time, you will need renice processes of user dima, but calculating correct priority penalty will
be inobvious. Instead, you can create a two CGroups and add one instance of make per CGroup. Than all tasks
which are spawned by dima's make will be accounted in scheduler entity corresponding to dima's CGroup.

Module 4: Operating system kernel tracing98

Let's look into details of implementation of CFS scheduler. First of all, it doesn't deal with
tasks directly, but schedules scheduler entities of type struct sched_entity. Such entity
may represent a task or a queue of entities of type struct cfs_rq (which is referenced by
field my_q), thus allowing to build hierarchies of entities and allocate resources to task groups
which are called CGroups in Linux. Processor run queue is represented by type struct rq
contains field cfs which is instance of struct cfs_rq and contains queue of all high-level
entities. Each entity has cfs_rq pointer which points to CFS runqueue to which that entity
belongs:

In this example processor run queue has two scheduler entities: one CFS queue with single
task (which refers top-level cfs_rq through parent pointer) in it and one top-level task.

CFS doesn't allocate timeslices like TS scheduler from Solaris did. Instead it accounts total
time which task had spend on CPU and saves it to sum_exec_runtime field. When task is
dispatched onto CPU, its sum_exec_runtime saved into prev_sum_exec_runtime, so
calculating their difference will give time period that task spent on CPU since last dispatch.
sum_exec_runtime is expressed in nanoseconds but it is not directly used to measure task's
runtime. To implement priorities, CFS uses task weight (in field load.weight) and divides
runtime by tasks weight, so tasks with higher weights will advance their runtime meter (saved
into vruntime field) slower. Tasks are sorted according their vruntime in a red-black tree
called tasks_timeline, while left-most task which has lowest vruntime of all tasks and
saved into rb_leftmost.

CFS has special case for tasks that have been woken up. Because they can be sleeping too
long, their vruntime may be too low and they will get unfairly high amount of CPU time.

99Module 4: Operating system kernel tracing

task_struct
pid
se

policy
prio

load.weight
rb_node

my_q

sum_exec_runtime

parent
vruntime

cfs_rq

sched_entity
load.weight
rb_node

my_q

sum_exec_runtime

parent
vruntime

cfs_rq

sched_entity

load.weight
nr_running

min_vruntime

tasks_timeline

curr
rb_leftmost

next, last, skip

cfs_rq

rq
nr_running

cfs

cpu
curr

load.weight
nr_running

min_vruntime

tasks_timeline

curr
rb_leftmost

next, last, skip

cfs_rq

task_struct
pid
se

policy
prio

load.weight
rb_node

my_q

sum_exec_runtime

parent
vruntime

cfs_rq

sched_entity

To prevent this, CFS keeps minimum possible vruntime of all tasks in min_vruntime field,
so all waking up tasks will get min_vruntime minus a predefined "timeslice" value. CFS
also have a scheduler buddies –- helper pointers for a dispatcher: next –- task that was
recently awoken, last –- task that recently was evicted from CPU and skip –- task that
called sched_yield() giving CPU to other entities.

So, let's implement a tracer for CFS scheduler:

Script file scripts/stap/cfstrace.stp

#!/usr/bin/env stap
/**
 * cfstrace.stp
 *
 * Traces context switching by CFS scheduler
 * Usage:
 * сfstrace.stp CPU
 *
 * Tested on Linux 3.10 (CentOS 7)
 */

/* Global parameters */
global be_verbose = 1;
global print_cfs_tree = 1;

global pnetime;
global cpetrace;

global trace_cpu;

global policy_names;

global cpu_cfs_rq;
global rq_curr;
global rq_clock_task;

/* get_task_se returns task_struct corresponding to scheduler entity se*/
function get_task_se:long(se:long) {
 offset = @cast(0, "struct task_struct")->se;
 return se - offset;
}

/* get_task_se returns sched_entity for task */
function get_se_task:long(task:long) {
 offset = @cast(0, "struct task_struct")->se;
 return task + offset;
}

/* get_rb_se returns sched_entity for red-black node */
function get_rb_se:long(rb:long) {
 offset = @cast(0, "struct sched_entity")->run_node;
 return rb - offset;
}

/* formats pretty string for task_struct t */
function sprint_task(t:long) {
 policy = @cast(t, "struct task_struct")->policy;
 return sprintf("t: %p %s/%d %s", t, task_execname(t), task_tid(t),

Module 4: Operating system kernel tracing100

 policy_names[policy]);
}

/* Generates CGroup or autogrou path for CFS run-queue */
function sprint_cfs_rq_path(cfs_rq:long) {
 tg = @cast(cfs_rq, "struct cfs_rq")->tg;
 if(!tg)
 return "???";

%(CONFIG_SCHED_AUTOGROUP == "y"
%?
 if(@cast(tg, "struct task_group")->autogroup) {
 return sprintf("/autogroup-%d",
 @cast(tg, "struct task_group")->autogroup->id);
 }
%)

 cgroup = @cast(tg, "struct task_group")->css->cgroup;

 try {
 return reverse_path_walk(@cast(cgroup, "struct cgroup")->dentry);
 }
 catch {
 return "/???";
 }
}

/* formats relative representation of vruntime */
function sprint_vruntime(se:long, min_vruntime:long) {
 vruntime = @cast(se, "struct sched_entity")->vruntime;
 if(min_vruntime)
 return sprintf("MIN+%d", vruntime - min_vruntime);
 else
 return sprintf("%d", vruntime);
}

/* Prints information about sched_entity se */
function print_se(s:string, se:long, verbose:long, min_vruntime:long) {
 printf("\tse:%8s ", s);

 my_q = @cast(se, "struct sched_entity")->my_q;

 if(my_q == 0) {
 println(sprint_task(get_task_se(se)));
 } else {
 printf("se: %p my_q: %p %s", se, my_q, sprint_cfs_rq_path(my_q));
 }

 if(verbose) {
 printf("\t\tload.weight: %d exec_start: RQ+%d vruntime: %s →
 sum_exec_runtime: %d\n",
 @cast(se, "struct sched_entity")->load->weight,
 rq_clock_task - @cast(se, "struct sched_entity")->exec_start,
 sprint_vruntime(se, min_vruntime),
 @cast(se, "struct sched_entity")->sum_exec_runtime);
 }
}

101Module 4: Operating system kernel tracing

/* Prints information about cfs_rq run-queue */
function print_cfs_rq(cfs_rq:long, verbose:long) {
 firstrb = @cast(cfs_rq, "struct cfs_rq")->rb_leftmost;
 skip = @cast(cfs_rq, "struct cfs_rq")->skip;
 last = @cast(cfs_rq, "struct cfs_rq")->last;
 nextse = @cast(cfs_rq, "struct cfs_rq")->next;
 min_vruntime = @cast(cfs_rq, "struct cfs_rq")->min_vruntime;

 printf("\tCFS_RQ: %s\n", sprint_cfs_rq_path(cfs_rq));

 if(verbose) {
 printf("\t\tnr_running: %d load.weight: %d min_vruntime: %d\n",
 @cast(cfs_rq, "struct cfs_rq")->nr_running,
 @cast(cfs_rq, "struct cfs_rq")->load->weight,
 @cast(cfs_rq, "struct cfs_rq")->min_vruntime);
 if(@defined(@cast(cfs_rq, "struct cfs_rq")->runnable_load_avg)) {
 printf("\t\trunnable_load_avg: %d blocked_load_avg: %d \n",
 @cast(cfs_rq, "struct cfs_rq")->runnable_load_avg,
 @cast(cfs_rq, "struct cfs_rq")->blocked_load_avg);
 }
 else {
 printf("\t\tload_avg: %d\n",
 @cast(cfs_rq, "struct cfs_rq")->load_avg);
 }
 }

 if(firstrb) {
 firstse = get_rb_se(firstrb);
 print_se("first", firstse, verbose, min_vruntime);
 }

 if(skip) print_se("skip", skip, 0, min_vruntime);
 if(last) print_se("last", last, 0, min_vruntime);
 if(nextse) print_se("next", nextse, 0, min_vruntime);

 if(print_cfs_tree)
 dump_cfs_rq(cpu_cfs_rq, be_verbose, min_vruntime);
}

function dump_cfs_rq_rb(indstr:string, rb:long, verbose:long, →
 min_vruntime:long) {
 left = @cast(rb, "struct rb_node")->rb_left;
 right = @cast(rb, "struct rb_node")->rb_right;

 print_se(sprintf("%s:", indstr), get_rb_se(rb), verbose, min_vruntime);

 if(left) dump_cfs_rq_rb(sprintf("%s-l", indstr), left, verbose, →
 min_vruntime);
 if(right) dump_cfs_rq_rb(sprintf("%s-r", indstr), right, verbose, →
 min_vruntime);
}

/* Prints tree tasks_timeline for cfs_rq */
function dump_cfs_rq(cfs_rq:long, verbose:long, min_vruntime:long) {
 root = @cast(cfs_rq, "struct cfs_rq")->tasks_timeline->rb_node;

 if(root)
 dump_cfs_rq_rb("rb", root, verbose, min_vruntime);

Module 4: Operating system kernel tracing102

}

probe begin {
 pnetime = local_clock_ns();
 cpu_cfs_rq = 0; rq_curr = 0;

 trace_cpu = $1;

 printf("Tracing CPU%d...\n", trace_cpu);

 policy_names[0] = "SCHED_NORMAL"; policy_names[1] = "SCHED_FIFO";
 policy_names[2] = "SCHED_RR"; policy_names[3] = "SCHED_BATCH";
 policy_names[4] = "SCHED_ISO"; policy_names[5] = "SCHED_IDLE";
}

/* pick_next_task_fair tries to find next task for execution.

 pick_next_entity - picks "next" entity from cfs_rq. If it returns another
 CGroup, not a task, pick_next_task_fair calls it again unless task is →
 returned*/
probe kernel.function("pick_next_task_fair") {
 if(cpu() != trace_cpu) next;

 pnetime2 = local_clock_ns();
 printf("=> pick_next_task_fair D=%d J=%d\n", pnetime2 - pnetime, →
 $jiffies);

 pnetime = pnetime2;
 cpu_cfs_rq = $rq->cfs;
}

probe kernel.function("pick_next_task_fair").return {
 if(cpu() != trace_cpu || cpu_cfs_rq == 0) next;

 printf(" task_tick_fair J=%d queued: %d curr: %s\n", $jiffies, $queued,
 sprint_task($curr));

 rq_curr = get_se_task($curr);
 cpu_cfs_rq = $rq->cfs;
}

probe kernel.function("sched_slice").return {
 if(cpu() != trace_cpu) next;

 printf("\tsched_slice: %d\n", $return);
}

probe kernel.function("task_tick_fair").return {
 if(cpu() != trace_cpu) next;

 print_se("curr", rq_curr, be_verbose,
 @cast(cpu_cfs_rq, "struct cfs_rq")->min_vruntime);
 printf("\t\tdelta_exec: %d\n",
 @cast(rq_curr, "struct sched_entity")->sum_exec_runtime -
 @cast(rq_curr, "struct sched_entity")->prev_sum_exec_runtime);

 firstrb = @cast(cpu_cfs_rq, "struct cfs_rq")->rb_leftmost;
 if(firstrb) {

103Module 4: Operating system kernel tracing

 firstse = get_rb_se(firstrb);
 printf("\t\tdelta: %d\n",
 @cast(rq_curr, "struct sched_entity")->vruntime -
 @cast(firstse, "struct sched_entity")->vruntime);
 }

 cpu_cfs_rq = 0;
 rq_curr = 0;

 println(" check_preempt_wakeup:");
 print_se("curr", get_se_task(t_curr), be_verbose, min_vruntime);
 print_se("se", get_se_task(t_se), be_verbose, min_vruntime);
}

probe kernel.function("check_preempt_wakeup").return {
 if(cpu() != trace_cpu) next;

 cpetrace = 0;

 print_cfs_rq(cpu_cfs_rq, be_verbose);
 println("

Let's conduct same experiments we performed on Solaris. In "duality" experiment manager
task (TID=6063) didn't preempt worker (TID=6061) immediately, but it was put into
task_timeline tree. Since it would have minimum vruntime of all tasks there (note that CFS
scheduler removes task from queue when it is dispatched onto CPU), it becomes left-most
task. It picked on a next system tick:
=> check_preempt_wakeup:
 se: curr tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-978205 vruntime: MIN+0
 se: se tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+41023325 vruntime: MIN+-6000000
 CFS_RQ: /
 nr_running: 2 load.weight: 2048 min_vruntime: 314380161884
 runnable_load_avg: 1067 blocked_load_avg: 0
 se: first tsexperiment/6063 SCHED_NORMAL
 se: rb: tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+41023325 vruntime: MIN+-6000000
check_preempt_wakeup

=> task_tick_fair J=4302675615 queued: 0 curr: tsexperiment/6061 SCHED_NORMAL
 sched_slice: 6000000
 se: curr tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-260001 vruntime: MIN+260001
 delta_exec: 42261531 delta: 6260001
task_tick_fair

=> pick_next_task_fair D=42422710 J=4302675615
 pick_next_entity
 CFS_RQ: /
 nr_running: 2 load.weight: 2048 min_vruntime: 314380161884
 runnable_load_avg: 1067 blocked_load_avg: 0
 se: first tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+42261531 vruntime: MIN+-6000000
 se: rb: tsexperiment/6063 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+42261531 vruntime: MIN+-6000000

Module 4: Operating system kernel tracing104

 se: rb-r: tsexperiment/6061 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-131878 vruntime: MIN+391879
pick_next_task_fair
 se: sched tsexperiment/6063 SCHED_NORMAL

In concurrency experiment thread receives 6ms timeslice (return value of sched_slice()
function), so it will be executed until its vruntime won't exceed min_vruntime:
=> pick_next_task_fair D=7015045 J=4302974601
pick_next_task_fair
 se: sched t: 0xffff880015ba0000 tsexperiment/6304 SCHED_NORMAL

=> task_tick_fair J=4302974602 queued: 0 curr: t: 0xffff880015ba0000 tsexperiment/6304 →
 SCHED_NORMAL
 sched_slice: 6000000
 se: curr tsexperiment/6304 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-868810 vruntime: MIN+0
 delta_exec: 868810 delta: -4996961
task_tick_fair

...

=> task_tick_fair J=4302974608 queued: 0 curr: t: 0xffff880015ba0000 tsexperiment/6304 →
 SCHED_NORMAL
 sched_slice: 6000000
 se: curr tsexperiment/6304 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-1007610 vruntime: MIN+1008440
 delta_exec: 6874211 delta: 1008440
task_tick_fair

=> pick_next_task_fair D=7040772 J=4302974608
 pick_next_entity
 CFS_RQ: /
 nr_running: 2 load.weight: 2048 min_vruntime: 337102568062
 runnable_load_avg: 2046 blocked_load_avg: 0
 se: first tsexperiment/6305 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+6874211 vruntime: MIN+0
 se: rb: tsexperiment/6305 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+6874211 vruntime: MIN+0
 se: rb-r: tsexperiment/6304 SCHED_NORMAL
 load.weight: 1024 exec_start: RQ+-160403 vruntime: MIN+1168843
pick_next_task_fair
 se: sched tsexperiment/6305 SCHED_NORMAL

You can conduct these experiments on your own.

Virtual memory
Consider the following C program which will be translated into assembler:

char msg[] = "Hallo, world"; // mov %edi, $224cc
msg[1] += 4; // add (%edi), $4

When single instance of that program is running, it will work as expected, message will
become "Hello, world". But what will happen if two instances of program will be run
simultaneously? Since compiler have used absolute addressing, second program may have
been overwritten data of first instance of a program, making it "Hillo, world!" (actually,
before that, program loader should load original message "Hallo, world" back). So
multiprocessing creates two problems: same addresses of different processes shouldn't point

105Module 4: Operating system kernel tracing

to same physical memory cell and processes should be disallowed to write to memory that
doesn't belong to them. Virtual memory is the answer to these problems.

Modern virtual memory mechanisms are based on page addressing: all physical memory is
divided to a pages of a small size (4 kb in x86). Processes are exist in a virtual address space
where each subset of addresses, say [BASE;BASE+PAGESIZE), maps to a single page. List of
such mappings is maintained as page table. Modern CPUs also provide support for huge
pages (Linux) or large pages (Solaris) which may be megabytes or even gigabyte in size.
Speaking of our previous example, kernel binary format loader will set up a virtual address
space for our program, copying all data to a new locations in physical memory:

When second instance of a program will start, new process with separate address space will
be created, thus making independent copy of process data, including "Hallo, world" message,
but with same addresses. When process (actually its thread or task) is dispatched onto CPU,
address of its page table is written to a special register (like CR3 on x86), so only it may
access its data. All address translations are performed by Memory Management Unit in CPU
and are transparent for it.

From the process point of view, pages are grouped into segments which constitute address
space:

New address spaces are created as a result of execve() system call. When it is finished,
new address space constitutes from four segments: text segment contains program code, data
segment contains program data. Binary loader also creates two special segments: heap for
dynamically allocated memory and stack for program stack. Process arguments and
environment are also initially put onto stack. Than, kernel runs process interpreter ld.so,
which actually a dynamic linker. That linker searches for libraries for a process such as

Module 4: Operating system kernel tracing106

mov %edi, $224cc

add (%edi), $4

H a l
, w o r l

l o
d \0

580114D8

580114D0

580114C8

580114C0

23000
22000
10000

50812000
50811000
50810000

Page table

ret

580114CC

'a'+4 = 'e'

bash
[text]

bash
[data]

[heap] [stack]
libc.so
[text]

libc.so
[data]

[anon]

bash
[text]

bash
[data]

[stack]
libc.so
[text]

libc.so
[data]

[anon]

bash
[text]

bash
[data]

[stack]
libc.so
[text]

libc.so
[data]

bash
[text]

bash
[data]

[stack]

execve()

ld.so

mmap()

brk()

standard C library libc.so and calls mmap() to load text and data sections of that libraries.

When you try to allocate memory using malloc(), standard C library may increase heap
using brk() or sbrk() system call. Program may also use mmap() calls to map files into
memory. If no file is passed to mmap() call, then it will create special memory segment
called an anonymous memory. Such memory segment may be used for memory allocators,
independent from main process heap.

You can check address space of a process with pmap program or by viewing
/proc/PID/mapping file on Linux.

Let's for example see, how memory is dynamically allocated by calling malloc() with
relatively large value. I used Python 2 range(10000) built-in which creates list with 10000
numbers.

SystemTap provides corresponding syscalls via tapset vm:
stap -d $(which python) --ldd -e '
 probe vm.brk, vm.mmap, vm.munmap {
 printf("%8s %s/%d %p %d\n",
 name, execname(), pid(), address, length);
 print_ubacktrace();
 }' -c 'python -c "range(10000)"'

Solaris doesn't have such tapset, but these operations are performed using as_map() and
as_unmap() kernel functions:
dtrace -qn '
 as_map:entry, as_unmap:entry {
 printf("%8s %s/%d %p %d\n",
 probefunc, execname, pid, arg1, arg2);
 ustack();
 }'
python -c "import time; range(10000); time.sleep(2)"

After running both of these scripts, you will see, that lot's of brk() calls are caused by
builtin_range() function in Python.

107Module 4: Operating system kernel tracing

Process address space is kept in mm_struct in Linux and in as_t structure in Solaris:

Each memory segment is represented by instance of vm_area_struct structure which has
two addresses: vm_start which points to the beginning of a segment and vm_end which
points to the end of the segment. Kernel maintains two lists of segments: linear double-linked
list of segments (sorted by their addresses) starting with mmap pointer in mm_struct with
vm_next and vm_prev pointers, another list is a red-black tree built with mm_rb as root and
vm_rb as node.

Segments may be mapped files, so they have non-NULL value of vm_file pointing to a
file. Each file has an address_space which contains all pages of a file in a page_tree
in a address_space object. This object also references host inode of a file and all
mappings corresponding to that file through linear and non-linear lists, thus making all
mappings of a file shared. Another option for mapping is anonymous memory –- its data is
kept in anon_vma structure. Every segment has a vm_mm pointer which refers mm_struct to
which it belongs.

mm_struct alone contains other useful information, such as base addresses of entire address
space mmap_base, addresses of a stack, heap, data and text segments, etc. Linux also caches
memory statistics for a process in rss_stat field of mm_struct which can be pretty-printed
with proc_mem* functions in SystemTap:
stap -e '
 probe vm.brk, vm.mmap {
 printf("%8s %d %s\n", name, pid(), proc_mem_string());
 }' -c 'python -c "range(10000)"'

Module 4: Operating system kernel tracing108

task_struct
active_mm

mm

mm_struct
mmap

pgd

mm_rb
mmap_base

map_count
task_size

23000
22000
10000

50812000
50811000
50810000

Page table

file
f_path

f_mapping

vm_mm

vm_file

vm_next

vm_start
vm_end

vm_flags

vm_prev
vm_rb

anon_vma

vm_area_struct

shared

linear.rb
nonlinear

vm_mm

vm_file

vm_next

vm_start
vm_end

vm_flags

vm_prev
vm_rb

anon_vma

vm_area_struct

shared

linear.rb
nonlinear

address_space
host

flags

page_tree
i_mmap

nrpages
i_mmap_nonlinear

In Solaris as_t structure accessible through p_as field of process and keeps all segments
in AVL tree where a_segtree is a root node and s_tree is a nodes embedded to a segment:

Each segment has backward link to address space s_as, s_base as base address of a
segment and s_size as its size. Solaris uses so-called segment drivers to distinguish one
type of a segment to another, so it provides table of operations through s_ops field and
private data through s_data field. One of the segment drivers is segvn driver which handles
mmapped segments of memory both from files and anonymous, which keep their data in
segvn_data structure which holds two pointers: vp to file's vnode and amp for a map of
anonymous memory.

Some memory will be consumed by a process indirectly. For example, when application
transfers a packet through the network or writes data to a file on /tmp filesystem, data is
buffered by Kernel, but that memory is not mapped to a process. To do so, Kernel uses
various in-kernel memory allocators and maintains kernel address space.

Page fault

As we mentioned before, when program accesses memory, memory management unit takes
address, finds an entry in a page table and gets physical address. That entry, however, may
not exist –- in that case CPU will raise an exception called a page fault. There are three types
of page faults that may happen:

• Minor page fault occurs when page table entry should exist, but corresponding page
wasn't allocated or page table entry wasn't created. For example, Linux and Solaris do not
allocate mmapped pages immediately, but wait until first page access which causes minor
page faults.

• Major page fault requires reading from disk. It may be caused by accessing
memory-mapped file or when process memory was paged-out onto disk swap.

• Invalid page fault occur when application access memory at invalid address or when
segment permissions forbid such access (for example writing into text segment, which is
usually disallowed). In this case operating system may raise SIGSEGV signal. A special case
of invalid page faults is copy-on-write fault which happens when forked process tries to write
to a parent's memory. In this case, OS copies page and sets up a new mapping for forked
process.

Page faults are considered harmful because they interrupt normal process execution, so
there are various system calls such as mlock(), madvise() which allow to flag memory

109Module 4: Operating system kernel tracing

proc_t
p_exec
p_as

as_t
a_flags

a_hat

a_segtree
a_size

23000
22000
10000

50812000
50811000
50810000

Page table
segvn_data

vp
amp

s_as

s_data

s_base
s_size
s_tree

seg

vnode_t
v_path
v_pages

s_as

s_data

s_base
s_size
s_tree

seg

areas to reduce memory faults. I.e. mlock() should guarantee page allocation, so minor fault
won't occur for that memory area. If page faults occurs in a kernel address space, it will lead
to kernel oops or panic.

You can trace page faults in Linux by attaching to vm.pagefault.return probe. It has
fault_type variable which is a bitmask of a fault type. RedHat-like kernels also have
mm_anon_* and mm_filemap_* probes. Page faults is also presented to a perf subsystem. In
Solaris all virtual memory events including page faults are available in vminfo provider:

Type DTrace SystemTap

Any vminfo::as_fault perf.sw.page_faults

Minor perf.sw.page_faults_min

Major vminfo:::maj_fault usually followed
by vminfo::pgin

perf.sw.page_faults_maj

Invalid vminfo:::cow_fault for
copy-on-write faults
vminfo:::prot_fault for invalid
permissions or address

See notes below

Note

Linux doesn't have distinct probe for invalid page fault –- these situations are handled by architecture-specific
function do_page_fault(). They are handled by family of bad_area*() functions on x86 architecture, so you
can attach to them:

stap -e '
 probe kernel.function("bad_area*") {
 printf("%s pid: %d error_code: %d addr: %p\n",
 probefunc(), pid(), $error_code, $address);
 } '

Note

By default perf probe fires after multiple events, because it is sampler. To alter that behaviour, you should use
.sample(1) which will fire on any event, but that requires to pass perf probes in raw form, i.e.:

perf.type(1).config(2).sample(1)

You can check actual values for type and config in /usr/share/systemtap/linux/perf.stp tapset. See also:
perf syntax in Profiling section of this book.

Page fault is handled by as_fault() function in Solaris:
faultcode_t as_fault(struct hat *hat, struct as *as,
 caddr_t addr, size_t size,
 enum fault_type type, enum seg_rw rw);

This function calls as_segat to determine segment to which fault address belongs,
providing struct seg* as a return value. When no segment may be found due to invalid
fault, it returns NULL.

Let's write simple tracer for these two functions. It also prints amp address and path of
vnode for segvn driver:

Script file scripts/dtrace/pagefault.d

#!/usr/sbin/dtrace -qCs

/**
 * pagefault.d
 *
 * Traces page faults which are handled by as_fault()

Module 4: Operating system kernel tracing110

 *
 * Tested on Solaris 11
 */

string fault_type[4];
string seg_rw_type[6];
string prot[8];

#define DUMP_AS_FAULT() \
 printf("as_fault pid: %d as: %p\n", pid, self->as); \
 printf("\taddr: %p size: %d flags: %s|%s \n", \
 self->addr, self->size, \
 fault_type[self->pf_type], \
 seg_rw_type[self->pf_rw] \
)

#define PROT(p) prot[(p) 0x7], \
 ((p) 0x8) ? "u" : "-"

#define VNODE_NAME(vp) (vp) \
 ? ((vp)->v_path) \
 ? stringof((vp)->v_path) \
 : "???" \
 : "[anon]"

#define DUMP_SEG_VN(seg, seg_vn) \
 printf("\t[%p:%p] %s%s\n\tvn: %s\n\tamp: %p:%d \n", \
 (seg)->s_base, (seg)->s_base + (seg)->s_size, \
 PROT((seg_vn)->prot), VNODE_NAME((seg_vn)->vp), \
 (seg_vn)->amp, (seg_vn)->anon_index \
)

#define IS_SEG_VN(s) (((struct seg*) s)->s_ops == `segvn_ops)

BEGIN {
 /* See vm/seg_enum.h */
 fault_type[0] = "F_INVAL"; fault_type[1] = "F_PROT";
 fault_type[2] = "F_SOFTLOCK"; fault_type[3] = "F_SOFTUNLOCK";

 seg_rw_type[0] = "S_OTHER"; seg_rw_type[1] = "S_READ";
 seg_rw_type[2] = "S_WRITE"; seg_rw_type[3] = "S_EXEC";
 seg_rw_type[4] = "S_CREATE"; seg_rw_type[5] = "S_READ_NOCOW";

 prot[0] = "---"; prot[1] = "r--";
 prot[2] = "-w-"; prot[3] = "rw-";
 prot[4] = "--x"; prot[5] = "r-x";
 prot[6] = "-wx"; prot[7] = "rwx";
}

fbt::as_fault:entry {
 self->in_fault = 1;

 self->as = args[1];
 self->addr = args[2];
 self->size = args[3];

 self->pf_type = args[4];
 self->pf_rw = args[5];

111Module 4: Operating system kernel tracing

}

fbt::as_fault:return
{
 self->in_fault = 0;
}

fbt::as_segat:return
/self->in_fault arg1 == 0/
{
 DUMP_AS_FAULT();
}

fbt::as_segat:return
/self->in_fault arg1 != 0 IS_SEG_VN(arg1)/
{
 this->seg = (struct seg*) arg1;
 this->seg_vn = (segvn_data_t*) this->seg->s_data;

 DUMP_AS_FAULT();
 DUMP_SEG_VN(this->seg, this->seg_vn);
}

Here is an example of a page fault traced by this script:
as_fault pid: 3408 as: 30003d2dd00
 addr: d2000 size: 1 flags: F_PROT|S_WRITE
 [c0000:d4000] rwxu
 vn: /usr/bin/bash
 amp: 30008ae4f78:0

It was most likely a data segment of a /usr/bin/bash binary (because it has rights rwxu),
while type of the fault is F_PROT which means invalid access right which makes it
copy-on-write fault.

If you run a script for a process which allocates and initializes large amount of memory,
you'll see lots of minor faults (identifiable by F_INVAL) with addresses which are go
sequentially:
as_fault pid: 987 as: ffffc10008fc6110
 addr: 81f8000 size: 1 flags: F_INVAL|S_WRITE
 [8062000:a782000] rw-u
as_fault pid: 987 as: ffffc10008fc6110
 addr: 81f9000 size: 1 flags: F_INVAL|S_WRITE
 [8062000:a782000] rw-u
as_fault pid: 987 as: ffffc10008fc6110
 addr: 81fa000 size: 1 flags: F_INVAL|S_WRITE
 [8062000:a782000] rw-u

Like we mentioned before, when application allocates memory, pages are not necessarily
created. So when process touches that memory first time, page fault occurs and actual page
allocation is performed.

Similarly, all pagefaults are handled by handle_mm_fault() function in Linux:
int handle_mm_fault(struct mm_struct *mm,
 struct vm_area_struct *vma,
 unsigned long address, unsigned int flags);

SystemTap provides a wrapper for it: vm.pagefault which we will use to write pagefault
tracer script for Linux:

Module 4: Operating system kernel tracing112

Script file scripts/stap/pagefault.stp

#!/usr/bin/stap

/**
 * pagefault.stp
 *
 * Traces page faults handled by handle_mm_fault()
 *
 * Tested on Linux 3.10 (CentOS 7)
 */

global fault_flags;
global vma_flags;

probe begin {
 /* See include/linux/mm.h */
 fault_flags[0] = "WRITE"; fault_flags[1] = "NONLINEAR";
 fault_flags[2] = "MKWRITE"; fault_flags[3] = "ALLOW_RETRY";
 fault_flags[4] = "RETRY_NOWAIT"; fault_flags[5] = "KILLABLE";

 vma_flags[0] = "VM_GROWSDOWN"; vma_flags[2] = "VM_PFNMAP";
 vma_flags[3] = "VM_DENYWRITE"; vma_flags[5] = "VM_LOCKED";
 vma_flags[6] = "VM_IO"; vma_flags[7] = "VM_SEQ_READ";
 vma_flags[8] = "VM_RAND_READ"; vma_flags[9] = "VM_DONTCOPY";
 vma_flags[10] = "VM_DONTEXPAND"; vma_flags[12] = "VM_ACCOUNT";
 vma_flags[13] = "VM_NORESERVE"; vma_flags[14] = "VM_HUGETLB";
 vma_flags[15] = "VM_NONLINEAR"; vma_flags[16] = "VM_ARCH_1";
 vma_flags[18] = "VM_DONTDUMP"; vma_flags[20] = "VM_MIXEDMAP";
 vma_flags[21] = "VM_HUGEPAGE"; vma_flags[22] = "VM_NOHUGEPAGE";
}

function prot_str:string(prot: long) {
 return sprintf("%s%s%s%s",
 (prot 0x1) ? "r" : "-",
 (prot 0x2) ? "w" : "-",
 (prot 0x4) ? "x" : "-",
 (prot 0x8) ? "s" : "-");
}

function vma_flags_str:string(flags: long) {
 prot = flags 0xf;
 mprot = (flags >> 4) 0xf;
 flags = flags >> 8;

 for(i = 0; i >= 1;
 }

 return sprintf("prot: %s may: %s flags: %s",
 prot_str(prot), prot_str(mprot),
 substr(str, 1, strlen(str) - 1));
}

function fault_flags_str:string(flags: long) {
 for(i = 0; i >= 1;
 }

 /* Cut first pipe sign ('|') */

113Module 4: Operating system kernel tracing

 return substr(str, 1, strlen(str) - 1);
}

function vm_fault_str(fault_type: long) {
 if(vm_fault_contains(fault_type, VM_FAULT_OOM))
 return "OOM";
 else if(vm_fault_contains(fault_type, VM_FAULT_SIGBUS))
 return "SIGBUS";
 else if(vm_fault_contains(fault_type, VM_FAULT_MINOR))
 return "MINOR";
 else if(vm_fault_contains(fault_type, VM_FAULT_MAJOR))
 return "MAJOR";
 else if(vm_fault_contains(fault_type, VM_FAULT_NOPAGE))
 return "NOPAGE";
 else if(vm_fault_contains(fault_type, VM_FAULT_LOCKED))
 return "LOCKED";
 else if(vm_fault_contains(fault_type, VM_FAULT_ERROR))
 return "ERROR";

 return "???";
}

probe vm.pagefault {
 printf("vm.pagefault pid: %d mm: %p\n", pid(), $mm);
 printf("\taddr: %p flags: %s\n", $address, fault_flags_str($flags));
 printf("\tVMA [%p:%p]\n", $vma->vm_start, $vma->vm_end);
 printf("\t%s\n", vma_flags_str($vma->vm_flags));
 printf("\tamp: %p\n", $vma->anon_vma)

 if($vma->vm_file != 0)
 printf("\tfile: %s\n", d_name($vma->vm_file->f_path->dentry))
}

probe vm.pagefault.return {
 printf("\t => pid: %d pf: %s\n", pid(), vm_fault_str(fault_type));
}

Here is an example of its output:
vm.pagefault pid: 1247 mm: 0xdf8bcc80
 addr: 0xb7703000 flags: WRITE
 VMA [0xb7703000:0xb7709000]
 prot: rw-- may: rwx- flags: VM_ACCOUNT
 amp: 0xdc62ca54
 => pid: 1247 pf: MINOR

Warning

vma_flags are not stable and change from version to version. This script contains values according to CentOS 7.
Check include/linux/mm.h for details.

Module 4: Operating system kernel tracing114

Kernel allocator

Virtual memory is distributed between applications and kernel by a subsystem which called
kernel allocator. It may be used both for applications and for internal kernel buffers such as
ethernet packets, block input-output buffers, etc.

Lower layer of the kernel allocator is a page allocator. It maintains lists of free pages which
are immediately available to consumers, cache pages which are cached filesystem data and
may be easily evicted and used pages that has to be reclaimed thus being writing on disk
swap device. Page allocation is performed by page_create_va() function in Solaris which
provides page-get and page-get-page static probes:
dtrace -qn '
 page-get* {
 printf("PAGE lgrp: %p mnode: %d bin: %x flags: %x\n",
 arg0, arg1, arg2, arg3);
 }'

Warning

Solaris 11.1 introduced new allocator infrastructure called VM2. Information about it is not publicly available,
so it is out of scope of our book.

Linux page allocator interface consists of alloc_pages*() family of functions and
__get_free_pages() helper. They have mm_page_alloc tracepoint which allows us to
trace it:
stap -e '
 probe kernel.trace("mm_page_alloc") {
 printf("PAGE %p order: %x flags: %x migrate: %d\n",
 $page, $order, $gfp_flags, $migratetype);
 }'

For most kernel objects granularity of a single page (4 or 8 kilobytes usually) is too high,
because most structures have varying size. On the other hand, implementing a classical heap
allocator is not very effective considering the fact, that kernel performs many allocations for
an object of same size. To solve that problem, a SLAB allocator (which we sometimes will
refer to as kmem allocator) was implemented in Solaris. SLAB allocator takes one or more
pages, splits it into a buffers of a smaller sizes as shown on picture:

Modern SLAB allocators may have various enhancements like per-cpu slabs, SLUB
allocator in Linux. Moreover, cache object is not necessarily created in SLAB allocators –-
objects of generic sizes may be allocated through function like kmalloc() in Linux or
kmem_alloc in Solaris which will pick cache based on a size, such as size-32 cache in
Linux or kmem_magazine_32 in Solaris. You can check overall SLAB statistics with
/proc/slabinfo file in Linux, ::kmastat mdb command in Solaris or by using KStat:
kstat -m unix -c kmem_cache.

Here are list of the probes related to kernel allocator:

115Module 4: Operating system kernel tracing

size = 16

kmem_cache_t slab

slabsize = n pages

16

Object Action DTrace SystemTap

Block of an
unspecified
size

alloc fbt::kmem_alloc:entry and
fbt::kmem_zalloc:entry

• arg0 –- size of the block
• arg1 –- flags

vm.kmalloc and vm.kmalloc_node

• caller_function –- address
of caller function

• bytes_req –- requested
amount of bytes

• bytes_alloc –- size of
allocated buffer

• gfp_flags and
gfp_flags_str –- allocation flags

• ptr –- pointer to an allocated
block

Block of an
unspecified
size

free fbt::kmem_free:entry

• arg0 –- pointer to the block
• arg1 –- size of the block

vm.kfree

• caller_function –- address
of caller function

• ptr –- pointer to an allocated
block

Block from
pre-defined
cache

alloc fbt::kmem_cache_alloc:entry

• arg0 –- pointer to kmem_cache_t
• arg1 –- flags

vm.kmem_cache_alloc and
vm.kmem_cache_alloc_node Same
params as vm.kmalloc

Block from
pre-defined
cache

free fbt::kmem_cache_free:entry

• arg0 –- pointer to kmem_cache_t
• arg1 –- pointer to a buffer

vm.kmem_cache_free Same params
as vm.kfree

Note that SystemTap probes are based on a tracepoints and provided by vm tapset.

On the other hand, when kernel needs to perform large allocations which are performed
rarely, different subsystems are used: vmalloc in Linux, or vmem in Solaris (which is used by
kmem SLAB allocator). Solaris also have segment drivers such as segkmem, segkpm, etc.

Exercize 4

Part 1

Implement scripts pfstat.d and pfstat.stp which will print count of pagefaults
grouping by a mmapped file name (if it reachable). Print statistics once per second. Use
proc_starter experiment from exercize 3 to demonstrate it and try to explain results you are
getting (you may need to include additional outputs for that).

Part 2

Implement scripts kmemstatp.stp and kmemstat.d which will gather stats on allocations
and frees on per-cache basis for a SLAB allocator. Use an file_opener experiment from
exercize 1 to demonstrate your script and find a correlation between number of requests
per-second generated by an experiment and cache allocations. What caches are primarily
used while file is opened?

Module 4: Operating system kernel tracing116

Virtual File System
One of the defining principles of Unix design was "Everything is a file". Files are organized

into filesystems of different nature. Some like FAT are pretty simple, some like ZFS and btrfs
are complex and incorporate volume manager into them. Some filesystems doesn't require
locally attached storage –- networked filesystems such as NFS and CIFS keep data on remote
node, while special filesystems do not keep data at all and just representation of kernel
structures: for example pipes are files on pipefs in Linux or fifofs in Solaris.

Despite this diversity of filesystem designs, they all share same API and conform same call
semantics, so working with local or remote file is transparent for userspace application. To
maintain these abstractions, Unix-like systems use Virtual File System (VFS) layer. Each
filesystem driver exports table of supported operations to VFS and when system call is issued,
VFS performs some pre-liminary actions, finds a filesystem-specific function in that table
and calls it.

Each filesystem object has a corresponding data structure as shown in the following table:

Description Solaris Linux

Open file entry uf_entry_t and file file

Mounted filesystem vfs_t vfsmount –- for the mount point
super_block –- for the filesystem

Table of filesystem
operations

vfsops_t super_operations

File or directory vnode_t dentry –- for entry in directory for file itself

Table of file/directory
operations

vnodeopts_t file_operations –- for opened file
inode_operaions –- for inode operations
address_space_operations –- for working
data and page cache

Each process keeps table of opened files as an array of corresponding structures. When
process opens a file, open() system call returns index in that array which is usually referred
to as file descriptor. Following calls such as read() or lseek() will get this index as first
argument, get corresponding entry from array, get file structure and use it in VFS calls.

Linux management structures are shown on the following schematic:

117Module 4: Operating system kernel tracing

task_struct* current

files->fdt->fd

fd=0

...

fd=1
fd=2
fd=3

fd=255

f_inode

f_flags

f_mapping

file

f_mode
f_pos

dentry
mnt

f_path

i_uid
i_gid

i_mapping

inode

i_size
i_ino
i_sb

s_dev
s_blocksize

s_fs_info

super_block

s_root
s_id
s_uuid
s_bdev

d_flags
d_parent

d_inode

dentry

d_name

mnt_sb
mnt_root

vfsmount

d_flags
d_parent

d_inode

dentry

d_name

Open file table is indirectly accessible through files field of task_struct. We used 256
entries as an example, actual amount of entries may vary. Each entry in this table is an file
object which contains information individual for a specific file descriptor such as open mode
f_mode and position in file f_pos. For example, single process can open same file twice (one
in O_RDONLY mode another in O_RDWR mode) –- in that case f_mode and f_pos for that file
will differ, but inode and possibly dentry objects will be the same. Note that last 2 bits of
file pointer are used internally by kernel code.

Each file is identifiable by two objects: inode represents service information for file itself
like owner information in fields i_uid and i_gid, while dentry represents file in directory
hierarchy (dentry is literally a directory entry). d_parent points to a parent dentry –- a
dentry of directory where file is located, d_name is a qstr structure which keeps name of
the file or directory (to get it use d_name function in SystemTap).

dentry and inode identify a file within filesystem, but systems have multiple filesystems
mounted at different locations. That "location" is referred to as mountpoint and tracked
through vfsmount structure in Linux which has mnt_root field which points to a directory
which acts as mountpoint. Each filesystem has corresponding super_block object which has
s_bdev pointer which points to a block device where filesystem data resides, s_blocksize
for a block size within filesystem. Short device name is kept in s_id field, while unique id of
filesystem is saved into s_uuid field of super block.

Note the i_mapping and f_mapping fields. They point to address_space structures
which we have been discussed in section Virtual Memory.

Let's get information on a file used in read() system call:
stap -e '
 probe syscall.read {
 file = @cast(task_current(), "task_struct")->
 files->fdt->fd[fd] ~3;
 if(!file)
 next;
 dentry = @cast(file, "file")->f_path->dentry;
 inode = @cast(dentry, "dentry")->d_inode;

 printf("READ %d: file '%s' of size '%d' on device %s\n",
 fd, d_name(dentry), @cast(inode, "inode")->i_size,
 kernel_string(@cast(inode, "inode")->i_sb->s_id));
 } ' -c 'cat /etc/passwd > /dev/null'

You may use task_dentry_path() function from dentry tapset instead of d_name() to
get full path of opened file.

Warning

fdt array is protected through special RCU lock, so we should lock it before accessing it like pfiles.stp authors
do. We have omitted that part in purpose of simplicity.

Module 4: Operating system kernel tracing118

https://sourceware.org/systemtap/examples/#process/pfiles.stp

Solaris structures organization is much more clear:

Like Linux, each process keep an array of uf_entry_t entries while entry in this array
points to an open file through uf_file pointer. Each file on filesystem is represented by
vnode_t structure (literally, node on virtual file system). When file is opened, Solaris creates
new file object and saves open file mode in flag fields f_flag and f_flag2, current file
position in f_offset and pointer to a vnode_t in f_vnode.

vnode_t caches absolute path to a file in v_path field. Type of vnode is saved in v_type
field: it could be VREG for regular files, VDIR for directories or VFIFO for pipes. VFS will
keep v_stream pointing to a stream corresponding to FIFO for pipes, and list of pages
v_pages for vnodes that actually keep data. Each filesystem may save its private data in
v_data field. For UFS, for example, it is inode structure (UDF also uses different inode
structure, so we named it inode (UFS) to distinguish them). UFS keeps id of inode in
i_number field, number of outstanding writes in i_number and i_ic field which is physical
representation of inode on disk, including uid and gid of owner, size of file, pointers to
blocks, etc.

Like in case of vnode, Solaris keeps representation of filesystem in two structures: generic
filesystem information like block size vfs_bsize is kept in vfs_t structure, while
filesystem-specific information is kept in filesystem structure like ufsvfs_t for UFS. First
structure to specific structure through vfs_data pointer. vfs_t refers to its mount point
(which is a vnode) through vfs_vnodecovered field, while it refers to filesystem object
through v_vfsmountedhere field.

DTrace provides array-translator fds for accessing file information through file descriptor
–- it is an array of fileinfo_t structures:
dtrace -q -n '
 syscall::read:entry {
 printf("READ %d: file '%s' on filesystem '%s'\n",

119Module 4: Operating system kernel tracing

kthread_t* curthread

p_user.u_finfo.fi_list

fd=0
fd=1
fd=2

fd=3

fd=255

f_vnode
f_offset

f_cred

file

f_flag
f_flag2

vfs_vnodecovered

vfs_flag

vfs_data

vfs_t

vfs_bsize

v_flag
v_type

v_data

vnode_t

v_vfsp
v_stream
v_pages
v_path

vfs_vfs
vfs_root

ufsvfs_t

t_proc

...

uf_file

uf_entry_t[]

inode (UFS)
i_vnode
i_ic

i_ufsvfs
i_writes
i_number

ic_uid
ic_gid

ic_blocks

v_vfsmountedhere

 arg0, fds[arg0].fi_name, fds[arg0].fi_mount);
 }' -c 'cat /etc/passwd > /dev/null'

However, if you need to access vnode_t structure directly, you may use schematic above:
dtrace -q -n '
 syscall::read:entry {
 this->fi_list = curthread->t_procp->p_user.u_finfo.fi_list;
 this->vn = this->fi_list[arg0].uf_file->f_vnode;
 this->mntpt = this->vn->v_vfsp->vfs_vnodecovered;

 printf("READ %d: file '%s' on filesystem '%s'\n",
 arg0, stringof(this->vn->v_path),
 (this->mntpt)
 ? stringof(this->mntpt->v_path)
 : "/");
 }' -c 'cat /etc/passwd'

Note that root filesystem have NULL vfs_vnodecovered, because there is no upper-layer
filesystem on which it mounted.

Solaris provides stable set of probes which are tracing VFS through fsinfo provider. It
provides vnode information as fileinfo_t structures just like fds array:
dtrace -n '
 fsinfo:::mkdir {
 trace(args[0]->fi_pathname);
 trace(args[0]->fi_mount);
 }' -c 'mkdir /tmp/test2'

Note that DTrace prints "unknown" for fi_pathname because when mkdir probe fires,
v_path is not filled yet.

VFS interface consists of fop_* functions like fop_mkdir which is callable through macro
VOP_MKDIR and, on the other side, call vop_mkdir hook implemented by filesystem through
vnodeops_t table. So to trace raw VFS operations you may attach probes directly to that
fop_* functions:
dtrace -n '
 fop_mkdir:entry {
 trace(stringof(args[1]));
 }' -c 'mkdir /tmp/test1'

Now string name should be correctly printed.

There is no unified way to trace VFS in Linux. You can use vfs_* functions the same way
you did with fop_*, but not all filesystem operations are implemented with them:
stap -e '
 probe kernel.function("vfs_mkdir") {
 println(d_name($dentry));
 }' -c 'mkdir /tmp/test4'

You may however use inotify subsystem to track filesystem operations (if
CONFIG_FSNOTIFY is set in kernel's configuration):
stap -e '
 probe kernel.function("fsnotify") {
 if(!($mask == 0x40000100))
 next;
 println(kernel_string2($file_name, "???"));
 } ' -c 'mkdir /tmp/test3'

In this example 0x40000100 bitmask consists of flags FS_CREATE and FS_ISDIR.

Module 4: Operating system kernel tracing120

Now let's see how VFS operations performed on files:

Application uses open() system call to open file. At this moment, new file object is
created and free entry in open files table is filled with a pointer to that object. Kernel,
however needs to find corresponding vnode/dentry object –- it will also need to check some
preliminary checks here. I.e. if uid of opening process is not equal to i_uid provided by
operating system and file mode is 0600, access should be forbidden.

To perform such mapping between file name passed to open() system call and dentry
object, kernel performs a kind of lookup call which searches needed file over directory and
returns object. Such operation may be slow (i.e. for file /path/to/file it needs readdir
path than do the same with to, and only then seek for file file), so operating systems
implement caches of such mappings. They are called dentry cache in Linux and Directory
Name Lookup Cache in Solaris.

In Solaris top-level function that performs lookup called lookuppnvp() (literally, lookup
vnode pointer by path name). It calls fop_lookup() which will call filesystem driver. Most
filesystems however will seek needed path name in DNLC cache, by doing dnlc_lookup():
dtrace -n '
 lookuppnvp:entry /execname == "cat"/ {
 trace(stringof(args[0]->pn_path));
 }
 fop_lookup:entry /execname == "cat"/ {
 trace(stringof(arg1));
 }
 dnlc_lookup:entry /execname == "cat"/ {
 trace(stringof(args[0]->v_path)); trace(stringof(arg1));
 }' -c 'cat /etc/passwd'

Linux uses unified system for caching file names called Directory Entry Cache or simply,
dentry cache. When file is opened, one of d_lookup() functions are called:
stap -e '
 probe kernel.function("__d_lookup*") {
 if(execname() != "cat") next;
 println(kernel_string($name->name));
 }' -c 'cat /etc/passwd > /dev/null'

121Module 4: Operating system kernel tracing

task_struct* current

open("file1", O_RDWR) = 3

..
.

0 1 2 3

2
5
5

lookup("file1")
dentry

dentry

dentry
dentry cache

or DNLCdentry

3

write(3, "OK")

close(3)

 O K0000
00000000
00000000
00000000

*
 o
 p
 e
 n

 S
 U
 S
 E

20
 1
 3
 .

2
00
00
00

*pagecache

Now, when file is opened, we can read or write its contents. All file data is located on disk
(in case of disk-based file systems), but translating every file operation into block operation is
expensive, so operating system maintains page cache. When data is read from file, it is read
from disk to corresponding page and then requested chunk is copied to userspace buffer, so
subsequent reads to that file won't need any disk operations –- it would be performed on page
cache. When data is written onto file, corresponding page is updated and page is marked as
dirty (red asterisk on image).

At the unspecified moment of time, page writing daemon which is relocated in kernel scans
page cache for dirty pages and writes them back to disk. Note that mmap() operation in this
case will simply map pages from page cache to process address space. Not all filesystems use
page cache. ZFS, for example, uses its own caching mechanism called Adaptive Replacement
Cache or ARC which is built on top of kmem allocator.

Let's see how read() system call is performed in detail:

Action Solaris Linux

Application initiates file
reading using system call

read() sys_read()

Call is passed to VFS stack
top layer

fop_read() vfs_read()

Call is passed to filesystem
driver

v_ops->vop_read() file->f_op->read() or
do_sync_read() or
new_sync_read()

If file is opened in direct
input output mode,
appropriate function is
called and data is returned

I.e. ufs_directio_read() a_ops->direct_IO

If page is found in page
cache, data is returned

vpm_data_copy() or
segmap_getmap_flt()

file_get_page()

If page was not found in
page cache, it is read from
filesystem

v_ops->vop_getpage() a_ops->readpage()

VFS stack creates block
input-output request

bdev_strategy() submit_bio()

Warning

This table is very simplistic and doesn't cover many filesystem types like non-disk or journalling filesystems.

We used names v_ops for table of vnode operations in Solaris, f_op for
file_operations and a_ops for address_space_operations in Linux. Note that in
Linux filesystems usually implement calls like aio_read or read_iter while read
operation calls function like new_sync_read() which converts semantics of read() call to
semantics of f_op->read_iter() call. Such "generic" functions are available in generic
and vfs tapsets.

Module 4: Operating system kernel tracing122

Block Input-Output
When request is handled by Virtual File System, and if it needs to be handled by underlying

block device, VFS creates a request to Block Input-Output subsystem. Operating system in
this case either fetches new page from a disk to a page cache or writes dirty page onto disk.
Disks are usually referred to as block devices because you can access them by using blocks of
fixed size: 512 bytes which is disk sector (not to mention disks with advanced format or
SSDs). On the other hand, character devices like terminal emulator pass data byte by byte
while network devices might have any length of network packet.

BIO top layer is traceable through io provider in DTrace:
dtrace -qn '
 io:::start
 /args[0]->b_flags B_READ/ {
 printf("io dev: %s file: %s blkno: %u count: %d \n",
 args[1]->dev_pathname, args[2]->fi_pathname,
 args[0]->b_lblkno, args[0]->b_bcount);
 }' -c "dd if=/dev/dsk/c2t0d1p0 of=/dev/null count=10"

If you check function name of that probe, you may see that it is handled by
bdev_strategy() kernel function which has only one argument of type struct buf. That
buffer represents a single request to a block subsystem and passed as arg0 to io:::start
probe and then translated to a bufinfo_t structure which is considered stable. DTrace also
supplies information about block device and file name in args[1] and args[2].

Linux has similar architecture: it has struct bio which represents single request to block
subsystem and generic_make_request() function (which, however, has alternatives)
which passes bio structure to device queues. SystemTap tapset ioblock provides access to
BIO probes:
stap -e '
 probe ioblock.request {
 if(bio_rw_num(rw) != BIO_READ)
 next;
 printf("io dev: %s inode: %d blkno: %u count: %d \n",
 devname, ino, sector, size);
 }' -c "dd if=/dev/sda of=/dev/null count=10"

In these examples we have traced only read requests.

Here are description of buf structure from Solaris and bio structure from Linux:

Field description bufinfo_t translator or struct
buf

struct bio

Request flags b_flags bi_flags

Read or write flags B_WRITE, B_READ in
b_flags

bi_rw, see also functions
bio_rw_num() and bio_rw_str()

Number of bytes b_bcount bi_size

Id of block b_blkno, b_lblkno bi_sector

Request finish callback b_iodone bi_end_io

Device identifiers b_edev, b_dip bi_bdev

Pointer to data b_addr or b_pages (only in buf
when B_PAGEIO flag is set)

See note below

Pointer to file descriptor b_file (only in buf)

123Module 4: Operating system kernel tracing

Note

struct bio in Linux contains table bi_io_vec, where each element contains pointer to a page bv_page, length
of data bv_len and offset inside page bv_offset. Field bi_vcnt shows how many structures of that type is in
vector while current index is kept in bi_idx.

Every bio structure can contain many files related to it (i.e. when I/O scheduler merges requests for adjacent
pages). You can find file inode by accessing bv_page which points to a page-cache page, which will refer
inode through its mapping.

When BIO request is created it is passed to scheduler which re-orders requests in a way
which will require fewer movement of disk heads (this improves HDD access time). This
subystem plays important role in Linux which implements a lot of different schedulers,
including CFQ (used by default in many cases), Deadline and NOOP (doesn't perform
scheduling at all). They are traceable with ioscheduler tapset. Solaris doesn't have
centralized place for that: ZFS uses VDEV queue mechanism, while the only unifying
algorithm is lift sorter which is implemented in sd_add_buf_to_waitq().

After scheduling BIO layer passes request to a device level:

Both Solaris and Linux use SCSI protocol as unified way to represent low-level device
access. SCSI devices can be stacked, i.e. with device mapper in Linux or MPxIO in Solaris,
but we will have only single layer in our examples. In any case, this subsystem is called SCSI
stack. All requests in SCSI stack are translated to SCSI packets (which can be translated to
ATA commands or passed as is to SAS devices). SCSI packet is handled in a several steps:

Action Solaris Linux

New instance of SCSI
packet is created

scsi_init_pkt() scsi.ioentry

SCSI packet is
dispatched on queue

sd_add_buf_to_waitq() scsi.iodispatching

SCSI packet is passed
to low-level driver

sdt::scsi-transport-dispatch
scsi_transport()

scsi.ioexecute

Low-level driver
generates interrupt
when SCSI packet is
finished

sd_return_command() scsi.iocompleted
scsi.iodone

Module 4: Operating system kernel tracing124

Bus and disk drivers

Request

SCSI stack

I/O scheduler

ioblock.request
io:::start

scsi.ioentry
scsi_init_pkt:entry

scsi.iodispatching
sd_add_buf_to_waitq:entry

scsi.ioexecute
sdt:::scsi-transport-dispatch

scsi.iodone
sd_return_command:entry

scsi.iocompleted

12 77 32 24

Block I/O layer

BIO requestSCSI packet

VFS layer and syscalls

ioscheduler.elv_completed_request

ioblock.end
io:::done

ioscheduler.elv_add_request

interrupt

Warning

Probe scsi.ioexecute can be not fired for all SCSI packets: usually bus or disk driver puts request to internal
queue and processes it independently from SCSI stack.

Note

We have used Solaris functions starting from sd prefix in this example. They are from sd driver which
represents SCSI disk. There is also ssd driver which is used for FC disks –- it is based on sd driver, but all
functions in it are using ssd prefix, i.e. ssd_return_command.

In Solaris each SCSI LUN has a corresponding sd_lun structure which keeps queue of
buffers in doubly-linked list referenced by un_waitq_headp and un_waitq_tailp pointers.
When new command is passed to SCSI stack, un_ncmds_in_driver is increased and when
packet is dispatched to transport, un_ncmds_in_transport is increased. They are decreased
when SCSI packet is discarded or when it was successfully processed and interrupt is fired to
notify OS about that. SCSI stack uses b_private field to keep sd_xbuf structure that keeps
reference to SCSI packet through xb_pktp pointer.

Following script traces block I/O layer and SCSI stack (sd driver in particular) in Solaris:

Script file scripts/dtrace/sdtrace.d

#!/usr/sbin/dtrace -qCs

#pragma D option nspec=1024
#pragma D option dynvarsize=4m

int specs[uint64_t];
uint64_t timestamps[uint64_t];

#define BUF_SPEC_INDEX(bp) \
 ((uint64_t) bp) ^ ((struct buf*) bp)->_b_blkno._f
#define BUF_SPECULATE(bp) \
 speculate(specs[BUF_SPEC_INDEX(bp)])

#define PROBE_PRINT(probe, bp) \
 printf("%-24s %p cpu%d %+llu\n", probe, bp, cpu, \
 (unsigned long long) (timestamp - \
 timestamps[BUF_SPEC_INDEX(bp)]))

125Module 4: Operating system kernel tracing

sd_dev
sd_address
sd_private

scsi_device

01011100 10111010
10111010 00011011
00011011 00000001

sd_lun
un_sd

un_ncmds_in_driver

un_blockcount

un_ncmds_in_transport
un_sys_blocksize

un_waitq_headp
un_waitq_tailp

b_flags
av_forw

b_addr

buf

av_back
b_count

b_blkno
b_private

xb_lun
xb_pktp

xb_private

sd_xbuf

b_flags
av_forw

b_addr

buf

av_back
b_count

b_blkno
b_private

#define PROC_PRINT() \
 printf("\tPROC: %d/%d %s\n", pid, tid, execname);

#define BUF_PRINT_INFO(buf) \
 printf("\tBUF flags: %s %x count: %d blkno: %d comp: ", \
 (buf->b_flags B_WRITE)? "W" : "R", buf->b_flags, \
 buf->b_bcount, buf->b_blkno); \
 sym((uintptr_t) buf->b_iodone); printf("\n")

#define DEV_PRINT_INFO(dev) \
 printf("\tDEV %d,%d %s\n", dev->dev_major, dev->dev_minor, \
 dev->dev_name);

#define FILE_PRINT_INFO(file) \
 printf("\tFILE %s+%d\n", file->fi_pathname, file->fi_offset);

#define PTR_TO_SCSIPKT(pkt) ((struct scsi_pkt*) pkt)
#define SCSIPKT_TO_BP(pkt) ((struct buf*) PTR_TO_SCSIPKT(pkt)->pkt_private)

#define SCSIPKT_PRINT_INFO(pkt) \
 printf("\tSCSI PKT flags: %x state: %x comp: ", \
 pkt->pkt_flags, pkt->pkt_state); \
 sym((uintptr_t) pkt->pkt_comp); printf("\n")

#define SCSI_PRINT_PATH(un) \
 printf("\tDEV %s\n", ddi_pathname(((struct sd_lun*) un)->un_sd->sd_dev, →
 0))

io:::start {
 specs[BUF_SPEC_INDEX(arg0)] = speculation();
 timestamps[BUF_SPEC_INDEX(arg0)] = timestamp;
}

io:::start {
 BUF_SPECULATE(arg0);

 printf("---------------------\n");
 PROBE_PRINT("io-start", arg0);
 PROC_PRINT();
 BUF_PRINT_INFO(args[0]);
 DEV_PRINT_INFO(args[1]);
 FILE_PRINT_INFO(args[2]);
}

*sd_initpkt_for_buf:entry {
 self->bp = arg0;
}

*sd_initpkt_for_buf:return
/arg1 != 0/ {
 BUF_SPECULATE(self->bp);
 PROBE_PRINT("ALLOCATION FAILED", self->bp);
}

*sd_initpkt_for_buf:return
/arg1 != 0/ {
 commit(specs[BUF_SPEC_INDEX(self->bp)]);
}

Module 4: Operating system kernel tracing126

*sdstrategy:entry {
 BUF_SPECULATE(arg0);
 PROBE_PRINT(probefunc, arg0);
}

*sd_add_buf_to_waitq:entry {
 BUF_SPECULATE(arg1);
 PROBE_PRINT(probefunc, arg1);
 SCSI_PRINT_PATH(arg0);
}

scsi-transport-dispatch {
 BUF_SPECULATE(arg0);
 PROBE_PRINT(probename, arg0);
}

scsi_transport:entry {
 this->bpp = (uint64_t) SCSIPKT_TO_BP(arg0);

 BUF_SPECULATE(this->bpp);
 PROBE_PRINT(probefunc, this->bpp);
 SCSIPKT_PRINT_INFO(PTR_TO_SCSIPKT(arg0));
}

*sdintr:entry {
 self->bpp = (uint64_t) SCSIPKT_TO_BP(arg0);

 BUF_SPECULATE(self->bpp);
 PROBE_PRINT(probefunc, self->bpp);
 SCSIPKT_PRINT_INFO(PTR_TO_SCSIPKT(arg0));
}

io:::done {
 BUF_SPECULATE(arg0);
 PROBE_PRINT("io-done", arg0);
 BUF_PRINT_INFO(args[0]);
}

io:::done {
 commit(specs[BUF_SPEC_INDEX(arg0)]);
 specs[BUF_SPEC_INDEX(arg0)] = 0;
}

It saves history of all I/O stages into a speculation which is committed when operation is
finished. Note that due to the fact that speculation has one buffer per processor output may be
garbled when interrupt was delivered to a processor other than processor that initiated request
and sdintr is called on it.

Here is an example output for script:
io-start ffffc100040c4300 cpu0 2261
 PROC: 1215/1 dd
 BUF flags: R 200061 count: 512 blkno: 0 comp: 0x0
 DEV 208,192 sd
 FILE +-1
sd_add_buf_to_waitq ffffc100040c4300 cpu0 11549
scsi-transport-dispatch ffffc100040c4300 cpu0 18332

127Module 4: Operating system kernel tracing

scsi_transport ffffc100040c4300 cpu0 21136
 SCSI PKT flags: 14000 state: 0 comp: sd`sdintr
sdintr ffffc100040c4300 cpu0 565121
 SCSI PKT flags: 14000 state: 1f comp: sd`sdintr
io-done ffffc100040c4300 cpu0 597642
 BUF flags: R 2200061 count: 512 blkno: 0 comp: 0x0

Each stage of request (marked bold) contains its name, address of buf pointer and time
since request creation in nanoseconds. In our case largest difference is between
scsi_transport and sdintr which is about half a second. It can be simply explained:
actual I/O was performed between these stages, and it is slower than processor operations.

SCSI stack also uses callback mechanism to notify request initiators when it is finished. In
our case lower-level driver had used sdintr callback while b_iodone field wasn't filled. It
is more likely that caller used biowait() routine to wait for request completion.

Like we said before, Linux has intermediate layer called a scheduler which can re-order
requests. Due to that, BIO layer maintains generic layer of block device queues which are
represented by struct request_queue which holds requests as struct request
instances:

Each request may have multiple bio requests which are kept as linked list. New requests
are submitted through blk_queue_bio() kernel function which will either create a new
request using get_request() function for it or merge it with already existing request.

Here are example script for Linux which traces BIO layer and SCSI stack:

Script file scripts/stap/scsitrace.stp

#!/usr/bin/stap

global rqs, bio2rq, specs, times;

function probe_print:string(bio:long) {
 return sprintf("%-24s %p cpu%d %u\n", pn(), bio, cpu(),
 gettimeofday_ns() - times[bio2rq[bio]]);
}

function rq_probe_print(rq:long, bio:long) {
 if(bio == 0)
 bio = @cast(rq, "struct request")->bio;
 return sprintf("%-24s %p %p cpu%d %u\n", pn(), bio, rq, cpu(),
 gettimeofday_ns() - times[bio]);

Module 4: Operating system kernel tracing128

bv_page
bv_offset
bv_len

bio_vec
bv_page
bv_offset
bv_len

bio_vec ...

bi_size
bi_io_vec

bi_next

bio

bi_bdev

bi_size
bi_io_vec

bi_next

bio

bi_bdev

q
bio

queuelist

request

biotail
rq_disk

q
bio

queuelist

request

biotail
rq_disk

request_queue
queue_head
last_merge

nr_rqs[2]
elevator

01011100 10111010
10111010 00011011
00011011 00000001

}

function proc_print:string() {
 return sprintf("\tPROC: %d/%d %s\n", pid(), tid(), execname());
}

function handle_bio2rq(bio:long, rq:long) {
 if(specs[rq] == 0) {
 specs[rq] = speculation();
 }

 rqs[rq] += 1;
 bio2rq[bio] = rq;

 speculate(specs[rq],
 rq_probe_print(rq, bio)
 .proc_print()
 .sprintf("\tBUF flags: %s %x count: %d blkno: %d comp: %s\n",
 bio_rw_str(@cast(bio, "bio")->bi_rw), @cast(bio, →
 "bio")->bi_flags,
 @cast(bio, "bio")->bi_size, @cast(bio, "bio")->bi_sector,
 symname(@cast(bio, "bio")->bi_end_io))
 .sprintf("\tDEV %d,%d\tINO %d\n", MAJOR(@cast(bio, →
 "bio")->bi_bdev->bd_dev),
 MINOR(@cast(bio, "bio")->bi_bdev->bd_dev), __bio_ino(bio)));
}

probe ioblock.request {
 times[$bio] = gettimeofday_ns();
}

probe kernel.function("bio_attempt_front_merge").return,
 kernel.function("bio_attempt_back_merge").return {
 if($return) {
 /* BIO was merged with request */
 rq = $req;
 bio = $bio;

 if(bio == 0) next;

 handle_bio2rq(bio, rq);
 }
}

probe kernel.function("get_request").return {
 rq = $return;
 bio = $bio;

 if(bio == 0) next;

 /* BIO were created a new request */
 handle_bio2rq(bio, rq);
}

probe ioscheduler.elv_add_request, ioscheduler.elv_completed_request {
 if(rq == 0 || specs[rq] == 0) next;
 speculate(specs[rq],
 rq_probe_print(rq, 0)

129Module 4: Operating system kernel tracing

 .sprintf("\tDEV %d,%d\n", disk_major, disk_minor));
}

probe scsi.ioentry, scsi.iodone, scsi.iocompleted, scsi.iodispatching {
 if(req_addr == 0 || specs[req_addr] == 0) next;
 speculate(specs[req_addr],
 rq_probe_print(req_addr, 0));
}

probe scsi.iodispatching {
 if(req_addr == 0 || specs[req_addr] == 0) next;
 speculate(specs[req_addr],
 rq_probe_print(req_addr, 0)
 .sprintf("\tSCSI DEV %d:%d:%d:%d %s\n",
 host_no, channel, lun, dev_id, device_state_str)
 .sprintf("\tSCSI PKT flags: %x comp: %s\n",
 @cast(req_addr, "struct request")->cmd_flags,
 symname($cmd->scsi_done)));
}

probe ioblock.end {
 bio = $bio;
 rq = bio2rq[bio];

 delete bio2rq[bio];
 delete times[bio];

 rqs[rq] -= 1;
 if(rqs[rq] == 0) {
 speculate(specs[rq], probe_print(bio));
 speculate(specs[rq], "----------\n");
 commit(specs[rq]);

 delete specs[rq];
 }
}

Script example outputs are shown below:
kernel.function("get_request@block/blk-core.c:1074").return 0xffff880039ff1500 0xffff88001d8fea00 cpu0 4490
 PROC: 16668/16674 tsexperiment
 BUF flags: R f000000000000001 count: 4096 blkno: 779728 comp: →
 end_bio_bh_io_sync
 DEV 8,0 INO 0
ioscheduler.elv_add_request 0xffff880039ff1500 0xffff88001d8fea00 cpu0 15830
 DEV 8,0
scsi.ioentry 0xffff880039ff1500 0xffff88001d8fea00 cpu0 19847
scsi.iodispatching 0xffff880039ff1500 0xffff88001d8fea00 cpu0 25744
 SCSI DEV 2:0:0:0 RUNNING
 SCSI PKT flags: 122c8000 comp: 0x0
scsi.iodispatching 0xffff880039ff1500 0xffff88001d8fea00 cpu0 29882
scsi.iodone 0xffff880039ff1500 0xffff88001d8fea00 cpu1 4368018
scsi.iocompleted 0xffff880039ff1500 0xffff88001d8fea00 cpu0 4458073
ioblock.end 0xffff880039ff1500 cpu0 1431980041275998676

Unlike Solaris, it shows to pointers for each stage: one for bio structure and one for
request. Note that we didn't use ioblock.request in our example. That is because we
wanted to distinguish merged and alone requests which can be done only with function

Module 4: Operating system kernel tracing130

boundary tracing.

Note

Linux 3.13 introduced a new mechanism for block device queues called blk-mq (Multi-Queue Block IO). It is
not covered in this book.

Asynchronicity in kernel
Let's return to our scripts, scsitrace.stp and sdtrace.d which we had introduced in

previous section, Block Input-Output. We tested it with block I/O. If we create a filesystem
on block device and try to write to it, we will see some interesting names of processes which
actually perform the write. I.e. on Solaris:
PROC: 5/15 zpool-tiger

or on Linux:
PROC: 643/643 flush-8:0

This is internal system process which is not related to a process which is actually initiated
write() call.

This is called an asynchronicity, a common kernel idiom when requests are kept in queues
and being flushed to receiver at an unspecified moment of time (i.e. when device is ready,
when we collected batch of adjacent requests, etc.). That flush is performed by separate
kernel process (note how it is named in Linux) which has its own context. In our example
write() system call won't actually start block input-output but updates page in page cache
making it dirty (incorrect ZFS as it actually queues ZIO operation). Then writeback
mechanism in Linux or fsflush daemon in Solaris is awoken. They walk dirty pages in page
cache and write them back to stable storage. Finally, when disk finishes requested operation,
bus driver will generate an interrupt which will create three independent contexts where
request was handled:

This makes thread-local variables useless for such cases.

To overcome this situation we can use associative arrays, but instead of using process ID or
thread ID we have to use something stable for a whole request execution. We can save PID
using that key and then access it from interrupt probe by using same key and print it.

In our example it would be address of page in Linux:
131Module 4: Operating system kernel tracing

generic_make_request()
bdev_strategy()

interrupt

write(3, "OK")

close(3)

 O K0000
00000000
00000000
00000000

*
 o
 p
 e
 n

 S
 U
 S
 E

20
 1
 3
 .

2
00
00
00

*pagecache

dd fsflush,
flush-8:0

stap -e '
 global pids;

 probe module("ext4").function("ext4_*_write_end"),
 module("xfs").function("xfs_vm_writepage") {
 page = $page;
 pids[page] = pid();

 printf("I/O initiated pid: %d page: %p %d\n",
 pid(), $page, gettimeofday_ns());
 }

 probe ioblock.request {
 if($bio == 0 || $bio->bi_io_vec == 0)
 next;
 page = $bio->bi_io_vec[0]->bv_page;

 printf("I/O started pid: %d real pid: %d page: %p %d\n",
 pid(), pids[page], page, gettimeofday_ns());
 } '
…
I/O initiated pid: 2975 page: 0xffffea00010d4d40 1376926650907810430
I/O initiated pid: 2975 page: 0xffffea00010d1888 1376926650908267664
I/O started pid: 665 real pid: 2975 page: 0xffffea00010d4d40 1376926681933631892

Note that despite the fact that process IDs in filesystem and block I/O probe are different,
address of page structure is stable here.

Same works for Solaris –- we can rely on dbuf pointer which represents a dnode buffer:
dtrace -n '
 dbuf_dirty:entry {
 pids[(uintptr_t) arg0] = pid;
 printf("I/O initiated pid: %d dbuf: %p %d",
 pid, arg0, timestamp);
 }

 dbuf_write:entry {
 this->db = args[0]->dr_dbuf;
 printf("I/O started pid: %d real pid: %d dbuf: %p %d",
 pid, pids[(uintptr_t) this->db], this->db,
 timestamp);
 } '

This technique is usually used request extraction –- in ideal case we could observe all
request handling from user clicking in a browser through network I/O, processing in web
server, accessing database and, eventually, block I/O caused by that.

Modern kernels have low-level primitives for building such asynchronous mechanisms. We
will discuss some of them later.

Module 4: Operating system kernel tracing132

Exercise 4

Part 1

Create two scripts: deblock.d and deblock.stp which would demonstrate effects of
unaligned input output for a synchronous writes. To do so, use aggregations to gather
throughput (amount of data written) on VFS and BIO layers. Dump aggregations on terminal
periodically using timer probes. Results should be grouped using name of disk device or/and
mount point path.

Create filesystems to conduct experiment. For example, ext4 in CentOS:
mkdir /tiger
mkfs.ext4 /dev/sda
mount /dev/sda /tiger

and ZFS in Solaris:
zpool create tiger c3t0d0

Warning

/dev/sda and c3t0d0 are the names in our lab environment. Replace them with with correct ones. /tiger
mount point, however will be used in experiment configuration files.

Note

You can use other filesystem types, however scripts from hints and solutions section will use ext4 and ZFS.
Filesystem should also have prefetching mechanisms for part 2.

Run deblock experiment to evaluate your scripts. 1Mb file is created in this example, and
blocks of random size (which is uniformly distributed value from 512 bytes to 16 kilobytes)
are written at random offsets to it. Filesystem driver has to align block size to filesystem
blocks which will induce additional overheads on block layer and even extra reads.

You can avoid effects of unaligned I/O by changing block size variator parameters like this:
/opt/tsload/bin/tsexperiment -e deblock/experiment.json run \
 -s workloads:fileio:params:block_size:randvar:min=4096 \
 -s workloads:fileio:params:block_size:randvar:max=4096

Block size becomes uniformly distributed in interval [4096;4096] which will be simply a
constant value of 4 kilobytes. Re-run your script and see how workload characteristics are
changed.

Part 2

In second part of this exercise we will evaluate filesystem prefetching or readahead
mechanisms. It will significantly improve synchronous sequential read performance as
operating systems will read blocks following by requested block asynchronously making it
available in page cache when application will request it.

Write readahead.stp and readahead.d scripts to see which layer is responsible for
prefetching. To do so, count number of operations on three levels: Virtual File System, Block
Input-Output and SCSI stack. Grouping and output are the same as in part 1.

Note that test file will be already in page cache (or ARC cache in case of ZFS) after we
create them, so we will need to flush it before running an experiment. The simplest way to do
that is to unmount filesystem and mount it again. I.e in Linux:

133Module 4: Operating system kernel tracing

umount /tiger/ ; mount /dev/sda /tiger/

Entire ZFS pools have to be exported-imported to destroy ARC cache.
zpool export tiger ; zpool import tiger

You may also use drop_caches tunable in Linux. This should be done before each
experiment run.

SimpleIO module of TSLoad workload generator will immediately start experiment after
writing the file. We should create that file manually before starting it:
dd if=/dev/zero of=/tiger/READAHEAD count=40960

And set overwrite option to true in experiment configuration.

Use readahead experiment to demonstrate your script. You may change sequential
operations to random by changing random generator type from sequental to linear
congruential generator and see how effects of readahead is changed:
/opt/tsload/bin/tsexperiment -e readahead/experiment.json run \
 -s workloads:fileio:params:offset:randgen:class=lcg

Network stack
One of the largest kernel subsystem is a network stack. It is called a stack because it

consists from multiple protocols where each of them works on top of the more primitive
protocol. That hierarchy is defined by different models such as OSI model or TCP/IP stack.
When user data is passed through network, it is encapsulated into packets of that protocols:
when data is passed to a protocol driver it puts some service data to the packet header and tail
so operating system on receiver host can recognize them and build original message even
when some data was lost or order of packets had changed during transmission.

Each layer of network stack has its responsibilities so they are not of concern of
higher-layer protocols. For example, IP allows to send datagrams through multiple routers
and networks, can reassemble packets but doesn't guarantee reliability when some data is lost
–- it is implemented in TCP protocol. Both of them can only transmit raw data, encoding or
compression is implemented on higher layer like HTTP.

Network subsystem (which transmits data between hosts) has a major difference over block
input-output (which stores data): It is very sensitive to latency, so writing or reading data
cannot be deferred. Due to that, sending and receiving is usually performed in the same
thread context.

Network stack in Unix systems can be split into three generic layers:

• Socket layer which implements BSD sockets through series of system calls.
• Intermediate protocol drivers such as ip, udp and tcp and packet filters.

Module 4: Operating system kernel tracing134

• Media Access Control (MAC) layer on the bottom which providing access to network
interface cards (NICs) and NIC API itself. It is called GLD in Solaris.

Network input-output can require transferring huge amounts of data, so it may be
ineffective to explicitly send write commands for each packet. Instead of handling each
packet individually, NIC and its driver maintain shared ring buffer where driver puts data
while card uses DMA (direct memory access) mechanisms to read data and send it over
network. Ring buffers are defined by two pointers: head and tail:

When driver wants to queue packet for transmission it puts it into memory area of
designated ring buffer and updates tail pointer appropriately. When NIC transfers data over a
network it will update head pointer.

135Module 4: Operating system kernel tracing

Receive
ring buffer

Send
ring bufferNetwork Card

DMA DMA

IP transmit

TCP transmit

sendmsg()

shutdown() connect()

IP receive

TCP receive

recvmsg()bind()

accept()

listen()

Connection:
 - state
 - peer addresses

Socket

N
IC drivers

IP
TCP

Sockets

NIC

head

tail

head

tail

head

o ,
w

o
r

o ,
w

o
r

o

,
w

o
rl l

l

tail

Application
sends packet

NIC sends
packet

Data structures are usually shared between stack layers. In Linux packets are represented by
a generic sk_buff structure:

That structure keeps two pointers: head and data and includes offsets for protocol
headers. Data length is kept in len field, time stamp of packet in tstamp field. sk_buff
structures form a doubly-linked list through next and prev structures. They refer network
device descriptor which is represented by net_device structure and a socket which is
represented by pair of structures: socket which holds generic socket data including file
pointer which points to VFS node (sockets in Linux and Solaris are managed by special
filesystems) and sock which keeps more network-related data including local address which
is kept in skc_rcv_saddr and skc_num and peer address in skc_daddr and skc_dport
correspondingly.

Note that CPU byte order may differ from network byte order, so you should use
conversion functions to work with addresses such as ntohs, ntohl or ntohll to convert to
host byte order and htons, htonl and htonll for reverse conversions. They are provided
both by SystemTap and DTrace and have same behaviour as their C ancestors.

Here are sample script for tracing message receiving in Linux 3.9:
stap -e '
 probe kernel.function("tcp_v4_rcv") {
 printf("[%4s] %11s:%-5d -> %11s:%-5d len: %d\n",
 kernel_string($skb->dev->name),

 ip_ntop($skb->sk->__sk_common->skc_daddr),
 ntohs($skb->sk->__sk_common->skc_dport),

 ip_ntop($skb->sk->__sk_common->skc_rcv_saddr),
 $skb->sk->__sk_common->skc_num,

 $skb->len);
 }'

Earlier versions of Linux (2.6.32 in this example) use different structure called inet_sock:
stap -e '
 probe kernel.function("tcp_v4_do_rcv") {
 printf("%11s:%-5d -> %11s:%-5d len: %d\n",
 ip_ntop(@cast($sk, "inet_sock")->daddr),
 ntohs(@cast($sk, "inet_sock")->dport),

 ip_ntop(@cast($sk, "inet_sock")->saddr),

Module 4: Operating system kernel tracing136

state
type

ops

socket

file
sk

next
prev

data

sk_buff

tstamp
sk
dev
len

sk_socket

sk_peerid

sock

sk_stamp

skc_dport
skc_num

__sk_common

skc_daddr
skc_rcv_saddr

skc_state

next
prev

data

sk_buff

tstamp
sk
dev
len

name
ifindex

stats

net_device

iflink

 ntohs(@cast($sk, "inet_sock")->sport),

 $skb->len);
 }'

Solaris has derived STREAMS subsystem from System V which is intended to provide API
for passing messages between multiple architectural layers which is perfectly fits to how
network stack look like. Each message is represented by an mblk_t structure:

Consumer reads data referred by b_rptr pointer while producer puts it under b_wptr
pointer if there is enough space in allocated buffer (it is referred by b_datap) or allocates a
new message and sets up forward and backward pointers b_next and b_prev so these
messages form a doubly-linked list.

Note that unlike sk_buff from Linux, these messages do not contain pointers to the
management structure. Instead of doing that, functions pass pointer to them as a separate
argument which is usually first argument of the function (arg0 in DTrace): mac_impl_t for
MAC layer, ill_t for IP layer and conn_t for TCP/UDP protocols:

Solaris wraps sockets into sonode structure which are handled by virtual file system called
sockfs. so_vnode field in that structure points to VFS node. Like we mentioned before, TCP
and UDP connection are managed by conn_t structure. It keeps addresses in connua_laddr
and connu_lport fields for local address and uses connua_faddr and connu_lport for
remote ports. Note that these names are different in Solaris 10.

Here are example DTrace script for tracing message receiving in Solaris 11:
dtrace -n '
 tcp_input_data:entry {
 this->conn = (conn_t*) arg0;
 this->mp = (mblk_t*) arg1;

 printf("%11s:%-5d -> %11s:%-5d len: %d\n",
 inet_ntoa((ipaddr_t*) (this->conn->connua_v6addr.
 connua_faddr._S6_un._S6_u32[3])),
 ntohs(this->conn->u_port.connu_ports.connu_fport),

 inet_ntoa((ipaddr_t*) (this->conn->connua_v6addr.

137Module 4: Operating system kernel tracing

b_next
b_prev

b_datap

mblk_t

b_rptr
b_wptr

b_next
b_prev

b_datap

mblk_t

b_rptr
b_wptr

so_vnode
so_cpid

so_listener

socket

so_rcv_queued
so_acceptq_len

conn_proto

conn_upper_handle

conn_t

cp_tcp
cp_udp

conn_proto_priv

connua_laddr
connua_faddr

connua_v6addr

connu_ports

u_port

connu_fport
connu_lport

tcp_connp
tcp_state

tcp_last_recv_time

tcp_t

tcp_ibsegs
tcp_obsegs

 connua_laddr._S6_un._S6_u32[3])),
 ntohs(this->conn->u_port.connu_ports.connu_lport),

 (this->mp->b_wptr - this->mp->b_rptr));
 }'

Solaris 11 introduced new providers for tracing network: tcp, udp and ip. Here are probes
that are provided by them and their siblings from Linux and SystemTap:

Action DTrace SystemTap

TCP

Connection to
remote node

tcp:::connect-request
tcp:::connect-established
tcp:::connect-refused

kernel.function("tcp_v4_connect")

Accepting remote
connection

tcp:::accept-established
tcp:::accept-refused

kernel.function("tcp_v4_hnd_req")

Disconnecting fbt:::tcp_disconnect tcp.disconnect

State change tcp::state-change -

Transmission tcp:::send tcp.sendmsg

Receiving tcp:::receive tcp.receive
tcp.recvmsg

IP

Transmission ip:::send kernel.function("ip_output")

Receiving ip:::receive kernel.function("ip_rcv")

Network device

Transmission mac_tx:entry, or function from
NIC driver like
e1000g_send:entry

netdev.transmit
netdev.hard_transmit

Receiving mac_rx_common:entry, or function
from NIC driver like
e1000g_receive:entry

netdev.rx

Sockets can be traced using syscall tracing. SystemTap provides special tapset socket for
that.

Both Linux and Solaris provide various network statistics which are provided by SNMP and
accessible through netstat -s command. Many events registered by these counters are
implemented using mib provider from DTrace or tcpmib, ipmib and linuxmib tapsets in
SystemTap, but they do not have connection-specific data.

Synchronization primitives

Locks

Modern operating system kernels are multi-threaded thus they allow parallel execution of
service routines and userspace threads. However, they share some common pools of
resources and objects for which these threads compete and may cause conflicts if two threads
request access simultaneously. If operating system won't resolve such conflict, object data
may be corrupted which may cause incorrect system behaviour and eventually, system panic.

Module 4: Operating system kernel tracing138

Information

For example, we have two processes in a system with pids 119 and 123 which are simultaneously executed on
different CPUs (for simplicity of the example, strictly speaking processes can compete for same resource even
on uni-processor system if scheduler will perform context switch while process is accessing resource or object).
So those processes are simultaneously called fork(), so operating system has to create a clones of these
processes and assign new pids to them. If we didn't provide mechanism that regulates accesses to pid table, they
both acquire first free pid 122 which leads to creation two processes with equal process ids which makes no
sense.

To prevent this, operating systems may use mutex (like it is done in Solaris) or combination of spin-lock and
atomic operation (Linux). mutex_enter() call in Solaris guarantees that only one thread can be executed while
holding mutex. Other threads will execute busy loop (which is called spin) or will be blocked on a sleep queue
and will be removed from run queue when they call mutex_enter() for mutex that already held:

When process 119 acquires new process id, it leaves mutex by calling mutex_exit(). This function activates
other process, 123, which may now access pid table, but it can't get process id 122 because process 123 is
already sees changes made by process 119. So it takes next available pid which is 124.

Mechanisms that prevent such conflicts from happening like processes with equal pids in
the example above are called synchronization primitives. They synchronize (even serialize)
accesses to shared resources and objects, but their implementation is independent of nature of
resource or object they are protecting.

Simplest primitive is an atomic. Atomics rely on processor ability to lock the system bus
and prevent other processor accesses to the memory (i.e. with lock instruction prefix in x86
command set) for a single instruction thus guarantee that no other thread will perform another
operation with the cell at the moment. They are widely used in Linux (but can be emulated on
some architectures), and almost not used in Solaris.

Atomics allow only single machine instruction to be performed on data atomically. If more
actions has to be done with guarantee that no other thread will intervene, critical section has
to be implemented. First concern is how many threads are allowed in the critical section.
Mutexes (mutual exclusion) allow only single thread, semaphores, which are generic variant
of mutex, allow limited amount of threads, read-write locks allow multiple reader threads
which do not change object but only single writer thread which exclusively modifies object
data.

139Module 4: Operating system kernel tracing

pid = 119

fork()

..
.

6
5
5
3
6

1 ..
.

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

..
.

6
5
5
3
6

1 ..
.

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

..
.

6
5
5
3
6

1 ..
.

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

..
.

6
5
5
3
6

1 ..
.

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

pid_allocate()

mutex_enter()

mutex_exit()

pid = 119 pid = 122

pid = 123

fork()

pid_allocate()

mutex_enter()

spin & sleep

mutex_exit()

pid = 123 pid = 124

pid table

The second question is how to handle thread that failed competition for accessing
synchronization object: it could either spin in busy loop or being put to a scheduler's sleep
queue. Not all synchronization objects are suitable for sleeping: i.e. it couldn't be used in a
interrupt context. Both approaches are also can be wasteful: spinning for a long time can
occupy processor while dequeuing and enqueuing threads to a scheduler queue can be
wasteful for short operations.

Linux prefers spin locks, but uses blocking mutexes in some places, Solaris uses universal
mutex interface which provides both spinning and adaptive mutexes (adaptive mutex spins
for short time and then goes to sleep phase). There are also sequental locks and
Read-Copy-Upgrade synchronization policy in Linux which would be outside of our short
review.

DANGER!

Linux and SystemTap doesn't provide probes for tracing locks (that are used in critical sections), and, moreover,
critical sections may be used in modules generated by SystemTap. Due to that, some spinlock functions are
blacklisted from tracing and require Guru mode to be enabled. We will provide name of the function for tracing
locks, but do not recommend to use them in production tracing.

Action DTrace SystemTap

Adaptive locks (which support blocking)

Acquire lockstat:::adaptive-acquire

lockstat:::adaptive-block
lockstat:::adaptive-spin

kernel.function("mutex_lock*")
kernel.function("debug_mutex_add_waiter")

Release lockstat:::adaptive-release kernel.function("mutex_unlock*")
kernel.function("debug_mutex_unlock")

kernel.function("debug_mutex_wake_waiter")

Spin locks

Acquire lockstat:::spin-acquire
lockstat:::spin-spin
lockstat:::thread-spin

kernel.function("spin_lock*")
kernel.function("debug_spin_lock_before")

kernel.function("debug_spin_lock_after")

Release lockstat:::spin-release kernel.function("spin_unlock*")
kernel.function("debug_spin_unlock")

Read-write locks

Acquire lockstat:::rw-acquire
lockstat:::rw-block

kernel.function("_raw_read_lock")
kernel.function("_raw_write_lock")
kernel.function("do_raw_read_lock")

kernel.function("debug_write_lock_before")

kernel.function("debug_write_lock_after")

Release lockstat:::rw-release kernel.function("_raw_read_unlock")
kernel.function("_raw_write_unlock")
kernel.function("do_raw_read_unlock")

kernel.function("debug_write_unlock")

Reader to writer
promotion

lockstat:::rw-upgrade -

Writer to reader
downgrade

lockstat:::rw-downgrade -

Module 4: Operating system kernel tracing140

Note

Probes ending with -spin and -block in DTrace fire at the same time as -acquire but provide information
about a time spent in sleep queue or spinning.

Note

SystemTap probes that are shown with small font are only available when kernel built with debug configuration
options such as CONFIG_DEBUG_MUTEXES.

There is a separate consumer for lockstat provider in Solaris: lockstat is a separate utility
which doesn't require a script to be written.

Events

Another type of synchronization primitives is event notifications. For example, command
that is expects input on tty should be queued into corresponding queue of tty device so then
user puts data into it they will be activated and can begin processing of user input. Linux
provides wait queues to implement such behaviour with a simplified interface to them called
completion variable.

They can be traced with following script:

Script file scripts/stap/wqtrace.stp

probe kernel.function("prepare_to_wait*"),
 kernel.function("add_wait_queue*") {
 if(pid() == stp_pid()) next;

 state = -1;
 if(@defined($state))
 state = $state;

 printf("[%d]%s %s:%s\n\twq head: %p wq: %p\n",
 pid(), execname(), symname(caller_addr()),
 probefunc(), $q, $wait);
 printf("\ttsk: %p state: %x func: %s\n",
 $wait->private, state, symname($wait->func));
}

probe kernel.function("wait_for_completion*") {
 if(pid() == stp_pid()) next;

 timeout = 0;
 if(@defined($timeout))
 timeout = $timeout;

 printf("[%d]%s %s:%s\n\tcompletion: %pwq head: %p timeout: %d\n",
 pid(), execname(), symname(caller_addr()),
 probefunc(), $x, $x->wait, timeout);
}

probe kernel.function("wait_for_completion*").return {
 if(pid() == stp_pid()) next;

 printf("[%d]%s %s:%s\n\tcompletion: %p\n",
 pid(), execname(), symname(caller_addr()), probefunc(), $x);
}

141Module 4: Operating system kernel tracing

probe kernel.function("finish_wait"),
 kernel.function("remove_wait_queue") {
 if(pid() == stp_pid()) next;

 printf("[%d]%s %s:%s\n\twq head: %p wq: %p\n",
 pid(), execname(), symname(caller_addr()),
 probefunc(), $q, $wait);
}

probe kernel.function("complete"),
 kernel.function("complete_all") {
 if(pid() == stp_pid()) next;

 printf("[%d]%s %s:%s\n\tcompletion: %p wq head: %p\n",
 pid(), execname(), symname(caller_addr()),
 probefunc(), $x, $x->wait);
}

probe kernel.function("__wake_up"),
 kernel.function("__wake_up_locked*"),
 kernel.function("__wake_up_sync*") {
 if(pid() == stp_pid()) next;

 nr = -1
 if(@defined($nr_exclusive))
 nr = $nr_exclusive;
 if(@defined($nr))
 nr = $nr;

 printf("[%d]%s %s:%s\n\twq head: %p state: %p nr: %d\n",
 pid(), execname(), symname(caller_addr()),
 probefunc(), $q, $mode, nr);
}

Here is example command which periodically awakens cat process on pipe input:
$ bash -c 'for I in a b c d e f g h;
 do echo $I;
 sleep 0.1; done' | cat > /dev/null

If we'd run that command, we will see similar output:
[11704]bash pipe_write:__wake_up_sync_key
 wq head: 0xffff8800371f6628 state: 0x1 nr: 1
[11704]bash do_wait:add_wait_queue
 wq head: 0xffff880039e11220 wq: 0xffff88001f89ff20
 tsk: 0xffff88003971a220 state: ffffffffffffffff func: →
 child_wait_callback
[11705]cat pipe_wait:finish_wait
 wq head: 0xffff8800371f6628 wq: 0xffff88001ee47d40
[11705]cat pipe_read:__wake_up_sync_key
 wq head: 0xffff8800371f6628 state: 0x1 nr: 1
[11705]cat pipe_wait:prepare_to_wait
 wq head: 0xffff8800371f6628 wq: 0xffff88001ee47d40
 tsk: 0xffff8800397196c0 state: 1 func: autoremove_wake_function

As you can see, bash triggers pipe_write() function to write a character to a pipe with a
cat process. After that cat process awakens from queue with head 0xffff8800371f6628

Module 4: Operating system kernel tracing142

and goes through finish_wait() function. It reads data from pipe, notifies writers that there
is free space in pipe buffer that can be written into and after putting letter to /dev/null
sleeps again in prepare_to_wait() function. If we hadn't redirected cat output to
/dev/null, than we would see longer chain of activated processes, maybe including SSH
daemon process which host pty and network activity.

In Solaris kernel event notification is performed with pair of mutex and condition variable
of type kcondvar_t. It has pretty simple interface: cv_wait family of functions waits on
condition variable (adds process to sleep queue) with optional timeout parameter and
allowing signal handling, cv_signal notifies single thread and wakes up it, cv_broadcast
wakes up all threads:

Script file scripts/dtrace/cvtrace.d

cv_wait*:entry {
 self->timeout = 0;
}

cv_timedwait_hires:entry,
cv_timedwait_sig_hires:entry {
 self->timeout = (arg2 / arg3) * arg3;
}

cv_wait:entry,
cv_wait_sig:entry,
cv_wait_sig_swap_core:entry,
cv_timedwait_hires:entry,
cv_timedwait_sig_hires:entry {
 printf("[%d] %s %s cv: %p mutex: %p timeout: %d\n",
 pid, execname, probefunc, arg0, arg1, self->timeout);
 stack(4);
}

cv_signal:entry,
cv_broadcast:entry {
 printf("[%d] %s %s cv: %p\n",
 pid, execname, probefunc, arg0);
 stack(4);
}

An example with cat utility which will used above will induce following output:
[15087] cat cv_wait_sig_swap_core cv: ffffc1000c9dde9c mutex: ffffc1000c9dde40 →
 timeout: 0
 genunix`cv_wait_sig_swap+0x18
 fifofs`fifo_read+0xc7
 genunix`fop_read+0xaa
 genunix`read+0x30c

[15086] bash cv_broadcast cv: ffffc1000c9dde9c
 fifofs`fifo_wakereader+0x2f
 fifofs`fifo_write+0x316
 genunix`fop_write+0xa7
 genunix`write+0x309

Kernel also provide tools for implementing thread blocking in user space. Solaris provides
set of syscalls for doing that, such as lwp_mutex_timedlock while Linux supplies universal
system call called futex (fast userspace mutex).

143Module 4: Operating system kernel tracing

Interrupt handling and deferred execution
Single instance of processor (core or hardware thread) can execute only single flow of

instructions and won't switch to another flow of instructions unless it is explicitly specified
with branch instruction. This model, however, prevents operating system from implementing
illusion of multiprocessing by periodically switching active threads (which represent flow of
instructions). To implement multiprocessing and many other concepts, processor provide
mechanism of interrupts.

When device, another processor or internal processor unit has to notify current processor
about some event: arrival of data in ring buffer of NIC, process exit leading to killing all of
its threads or integer division by zero, they send an interrupt request (IRQ). Multiprocessing
itself is handled through virtual device, called system timer which can send interrupt after
pre-defined time. In response to interrupt request, processor saves context on current stack
and switches its execution to pre-defined interrupt service routine (ISR) or interrupt handler.
The closest userspace analogue of interrupts is signals.

Interrupts are generally considered bad for performance as their handling "steals" time from
actual program, leads to cache cooldown, etc., so a lot of effort in operating system
development is put to reduce their negative effect. It is done through better balancing
interrupts across processors and deferring execution of the interrupt service routine. Due to
that only high-priority interrupts such as Non-Maskable Interrupt (NMI) are handled directly
in a interrupt service routine.

Most interrupts use interrupt threads - separate threads that can handle interrupt but in a
same time can be interrupted or de-scheduled (but they will have highest priorities in Solaris).
These threads are created by device drivers in Linux and then saved into handler field of
irqaction structure and are being activated if interrupt handler has returned
IRQ_WAKE_THREAD code. In Solaris, on contrary, each processor has its own interrupt
handling thread which is saved into cpu_intr_thread of cpu_t.

SystemTap provides irq tapset which contains probes for tracing interrupt handlers:
stap --all-modules -e '
 probe irq_handler.entry, irq_handler.exit {
 printf("%-16s %s irq %d dev %s\n", pn(), symname(handler),
 irq, kernel_string(dev_name)); } '

Solaris has several SDT probes that can be used to trace interrupt handlers too:
dtrace -n '
 av_dispatch_autovect:entry {
 self->vec = arg0; }
 sdt:::interrupt* {
 printf("%s irq %d dev %s", probename, self->vec,
 (arg0) ? stringof(((struct dev_info*) arg0)->devi_addr) : "??");
 sym(arg1); } '

Interrupt threads is not the only method to defer execution of certain kernel code: kernel
provides a lot of other facilities to do so. They are referred to as bottom halves of interrupt,
while interrupt handler itself is a top half which responsibility is to activate bottom half. An
example of them is defferred interrupt handlers softirqs and tasklets in Linux which are
executed in the context of ksoftirqd-N kernel threads. They are prioritized where
TASKLET_SOFTIRQ has the lesser priority and serves for execution of tasklets (they are more
lightweight than softirqs). They could be traced using softirq.entry and softirq.exit
probes.

Module 4: Operating system kernel tracing144

If bottom half (or any other in-kernel job) has to be executed at specified moment of time,
Linux provides timers while Solaris has cyclic subsystem which can be accessed through
callouts or timeout()/untimeout() calls.

To simplify execution of small chunks of work Linux provide workqueue mechanism
which has closest analogue in Solaris –- task queues. They provide a pool of worker threads
whose extract function and data pointers from a queue and call that function. Many drivers
may implement their own work queues. Solaris provides static probes to trace task queues:
dtrace -n '
 taskq-exec-start, taskq-enqueue {
 this->tqe = (taskq_ent_t*) arg1;
 printf("%-16s %s ", probename, stringof(((taskq_t*) arg0)->tq_name));
 sym((uintptr_t) this->tqe->tqent_func);
 printf("(%p)", this->tqe->tqent_arg); }'

SystemTap provide corresponding probes in irq tapset, but they do not work in modern
kernels:
stap --all-modules -e '
 probe workqueue.insert, workqueue.execute {
 printf("%-16s %s %s(%p)\n",
 pn(), task_execname(wq_thread), symname(work_func), work);
 } '

Linux kernel 2.6.36 got new workqueue implementation, and, eventually new set of
tracepoints which can be traced like this (SystemTap >=2.5 required):
stap --all-modules -e '
probe kernel.trace("workqueue_execute_end"),
 kernel.trace("workqueue_execute_start") {
 printf("%s %s(%p)\n",
 pn(), symname($work->func), $work); } '

145Module 4: Operating system kernel tracing

Module 5: Application tracing

Userspace process tracing
We had covered kernel organization in detail in previous chapter, but it would be useless

without userspace application that services end-user requests. It can be either simple cat
program which we used in many previous examples to complex web application which uses
web server and relational database. Like with the kernel, DTrace and SystemTap allow to set
a probe to any instruction in it, however it will require additional switch to kernel space to
execute the code. For example, let's install probe on a read() call on the side of standard C
library:

In DTrace userspace tracing is performed through pid provider:
pid1449:libc:__read:entry

In this example entry point of __read() function from standard C library is patched for
process with PID=1449. You may use return as name for return probes, or hexadecimal
number –- in this case it will represent an instruction offset inside that function.

If you need to trace binary file of application itself, you may use a.out as module name in
probe specification. To make specifying PID of tracing process easier, DTrace provides
special macro $target which is replaced with PID passed from -p option or with PID of
command which was run with -c option:
dtrace -n '
 pid$target:a.out:main:entry {

Module 5: Application tracing146

libc.so.1`__read

Probe

Code

cat some_file

Code
sys_read(...)

Userspace
application

Operating
system kernel

 ustack();
 }' -c cat

Userspace probes are created with process().function() syntax in SystemTap, where
process contains path of shared library or executable binary which should be traced. This
syntax is similar to kernel syntax (as described in Probes): it supports specifying line
numbers, source file names, .statement() and .return probes:
stap -e '
 probe process("/lib64/libc.so.6").function("*readdir*") {
 print_ubacktrace();
 }' -c ls -d /usr/bin/ls

Unlike DTrace, in SystemTap any process which invokes readdir() call from standard C
library will be traced. Note that we used -d option so SystemTap will recognize symbols
inside ls binary. If binary or library is searchable over PATH environment variable, you may
omit path and use only library name:
export PATH=$PATH:/lib64/
stap -e '
 probe process("libc.so.6").function("*readdir*") {
 [...] }' ...

SystemTap uses uprobes subsystem to trace userspace processes, so CONFIG_UPROBES
should be turned on. It was introduced in Linux 3.5. Before that, some kernels (mostly
RedHat derivatives) were shipped with utrace which wasn't supported by vanilla kernels. It is
also worth mentioning that like with kernel tracing, you will need debug information for
processes you want to trace that is shipped in -debuginfo or -dbg packages.

Like with kernel probes, you may access probe arguments using arg0-argN syntax in
DTrace and $arg_name syntax in SystemTap. Probe context is also available. Accessing data
through pointers however, would require using copyin() functions in DTrace and user_()
functions in SystemTap as described in Pointers section.

Warning

Tracing multiple processes in DTrace is hard –- there is no -f option like in truss. It is also may fail if
dynamic library is loaded through dlopen(). This limitations, however, may be bypassed by using destructive
DTrace actions. Just track required processes through process creation probes or dlopen() probes, use stop()
to pause process execution and start required DTrace script. dtrace_helper.d from JDK uses such approach.

User Statically Defined Tracing

Like in Kernel mode, DTrace and SystemTap allow to add statically defined probes to a
user space program. It is usually referred to as User Statically Defined Tracing or USDT. As
we discovered for other userspace probes, DTrace is not capable of tracking userspace
processes and automatically register probes (as you need explicitly specify PID for pid$$
provider). Same works for USDT –- program code needs special post-processing that will add
code which will register USDT probes inside DTrace.

SystemTap, on contrary, like in case of ordinary userspace probes, uses its task finder
subsystem to find any process that provides a userspace probe. Probes, however are kept in
separate ELF section, so it also requires altering build process. Build process involves
dtrace tool which is wrapped in SystemTap as Python script, so you can use same build
process for DTrace and SystemTap. Building simple program with USDT requires six steps:

• You will need to create a definition of tracing provider (and use .d suffix to savei it). For
example:

147Module 5: Application tracing

provider my_prog {
 probe input__val(int);
 probe process__val(int);
};

• Here, provider my_prog defines two probes input__val and process__val. These
probes take single integer argument.

• (optional) Than you need to create a header for this file:
dtrace -C -h -s provider.d -o provider.h

• Now you need to insert probes into your program code. You may use generic
DTRACE_PROBEn macros (in DTrace, supported by SystemTap) or STAP_PROBEn macros (in
SystemTap) from header:
DTRACE_PROBEn(provider-name, probe-name, arg1, ...);

• Or you may use macros from generated header:
MY_PROG_INPUT_VAL(arg1);

If probe argument requires additional computation, you may use enabled-macro, to check if
probe was enabled by dynamic tracing system:
if(MY_PROG_INPUT_VAL_ENABLED()) {
 int arg1 = abs(val);
 MY_PROG_INPUT_VAL(arg1);
 }

In our example, program code will look like this:
#include

int main() {
 int val;
 scanf("%d",);
 DTRACE_PROBE1(my_prog, input__val, val);
 val *= 2;
 DTRACE_PROBE1(my_prog, process__val, val);
 return 0;
}

• Compile your source file:
gcc -c myprog.c -o myprog.o

• You will also need to generate stub code for probe points or additional ELF sections,
which is also performed by dtrace tool. Now it has to be called with -G option:
dtrace -C -G -s provider.d -o provider.o myprog.o

• Finally, you may link your program. Do not forget to include object file from previous
step:
gcc -o myprog myprog.o provider.o

Name of a probe would be enough to attach an USDT probe with DTrace:
dtrace -n '
 input-val {
 printf("%d", arg0);
 }'

Full name of the probe in this case will look like this:
my_prog10678:myprog:main:input-val. Module would be name of the executable file or
shared library, function is the name of C function, name of probe matches name specified in

Module 5: Application tracing148

provider except that double underscores __ was replaced with single dash -. Name of the
provider has PID in it like pid$$ provider does, but unlike it you can attach probes to
multiple instances of the program even before they are running.

USDT probes are available via process tapset:
stap -e '
 probe process("./myprog").mark("input__val") {
 println($arg1);
 }'

Full name of the probe will use following naming schema:
process("path-to-program").provider("name-of-provider").mark("name-of-probe")

Note that unlike DTrace, SystemTap won't replace underscores with dashes

To implement probe registration, Solaris keeps it in special ELF section called .SUNW_dof:
elfdump ./myprog | ggrep -A 4 SUNW_dof
Section Header[19]: sh_name: .SUNW_dof
 sh_addr: 0x8051708 sh_flags: [SHF_ALLOC]
 sh_size: 0x7a9 sh_type: [SHT_SUNW_dof]
 sh_offset: 0x1708 sh_entsize: 0
 sh_link: 0 sh_info: 0
 sh_addralign: 0x8

Linux uses ELF notes capability to save probes information:
readelf -n ./myprog | grep stapsdt
 stapsdt 0x00000033 Unknown note type: (0x00000003)
 stapsdt 0x00000035 Unknown note type: (0x00000003)

Because of the nature of DTrace probes which are registered dynamically, they could be
generated dynamically. We will see it in JSDT. Another implementation of dynamic DTrace
probes is libusdt library.

References

• SystemTap Wiki: Adding User Space Probing to an Application
• Statically Defined Tracing for User Applications

Unix C library
libc is a C library shipped with Unix which provides access to most of its facilities like

system calls in a portable manner. Linux glibc (one of the implementations of libc which is
most popular) and libc shipped with Solaris contain some USDT probes. We will discuss
them in this section.

On Solaris USDT probes are limited to userspace mutexes and read-write locks which
available as plockstat provider (similar to lockstat provider we discussed earlier). glibc,
however implements wider set of probes: along with various pthread operations which
include not only mutexes and rwlocks but also condition variables and threads operations, it
supports tracing of setjmp/longjmp and dynamic linker ld.so.

Lets see how mutexes are traced in Solaris and Linux (in this section we will assume glibc
by saying "Linux"). Solaris provides them through plockstat provider:
plockstatpid:::probe-name

SystemTap will use standard USDT notation for it:
probe process("libpthread.so.0").mark("probe-name")

149Module 5: Application tracing

https://github.com/chrisa/libusdt
https://sourceware.org/systemtap/wiki/AddingUserSpaceProbingToApps
http://docs.oracle.com/cd/E18752_01/html/817-6223/chp-usdt.html

Note that libpthread.so.0 will vary in different distributions. We will use
macro-definitions for paths in our scripts.

Userspace programs have to explicitly ask kernel to block thread that is waiting on
condition variable or mutex. Linux provides futex system call for it which is wrapped into
so-called low-level-locks in glibc (they are seen by probes those name start with lll). Solaris
provides multiple lwp_* system calls for it like lwp_park which "parks" thread (stops its
execution).

Here are list of probes available for userspace mutexes (use them as probe name). First
argument (arg0 in DTrace or $arg1 in SystemTap) would be address of pthread mutex.
Some probes can contain more arguments, i.e. DTrace will pass number of spinning loops to
mutex-spun probe. Check documentation for them.

Action DTrace SystemTap

Creation - mutex_init

Destruction - mutex_destroy

Attempt to acquire - mutex_entry

Busy waiting (spinning) mutex-spin
mutex-spun

-

Attempt to block mutex-block lll_lock_wait

Acquired mutex mutex-blocked
mutex-acquire
mutex-error

mutex_release
lll_futex_wake

Here are an example of pthread tracer in SystemTap:

Script file scripts/stap/pthread.stp

#!/usr/bin/env stap

@define libpthread %("/lib64/libpthread.so.0" %)
@define libc %("/lib64/libc.so.6" %)

probe process(@libpthread).mark("pthread_create") {
 if(pid() != target()) next;

 thread_id = user_long($arg1);
 thread_caller = usymname($arg3);
 thread_arg = $arg4;

 printf("[%d] pthread_create %x %s(%x)\n", tid(),
 thread_id, thread_caller, thread_arg);
}

probe process(@libpthread).mark("pthread_start") {
 if(pid() != target()) next;

 thread_id = $arg1;
 printf("[%d] pthread_start %x\n", tid(), thread_id);
}

probe process(@libpthread).mark("pthread_join") {
 if(pid() != target()) next;

 thread_id = $arg1;
Module 5: Application tracing150

 printf("[%d] pthread_join %x\n", tid(), thread_id);
}

probe process(@libpthread).mark("pthread_join_ret") {
 if(pid() != target()) next;

 thread_id = $arg1;
 printf("[%d] pthread_join %x return -> %d/%d \n", tid(),
 thread_id, $arg2, $arg3);
}

probe process(@libpthread).mark("mutex_*"),
 process(@libpthread).mark("cond_*"),
 process(@libpthread).mark("rdlock_*"),
 process(@libpthread).mark("wrlock_*"),
 process(@libpthread).mark("rwlock_*") {
 if(pid() != target()) next;

 printf("[%d] %s %p\n", tid(), pn(), $arg1);
 print_ustack(ucallers(5));
}

probe process(@libpthread).mark("lll_*"),
 process(@libc).mark("lll_*") {
 if(pid() != target()) next;

 printf("[%d] %s\n", tid(), pn());
 print_ustack(ucallers(5));
}

If we set tsexperiment process as a target, we can see how request is passed from control
thread to a worker thread (some output is omitted):
[8972] process("/lib64/libpthread.so.0").mark("mutex_entry") 0xe1a218
 0x7fbcf890fa27 : tpd_wqueue_put+0x26/0x6a [/opt/tsload/lib/libtsload.so]
[8972] process("/lib64/libpthread.so.0").mark("mutex_acquired") 0xe1a218
 0x7fbcf890fa27 : tpd_wqueue_put+0x26/0x6a [/opt/tsload/lib/libtsload.so]
[8972] process("/lib64/libpthread.so.0").mark("cond_broadcast") 0xe1a240
[8972] process("/lib64/libpthread.so.0").mark("mutex_release") 0xe1a218
 0x7fbcf890fa27 : tpd_wqueue_put+0x26/0x6a [/opt/tsload/lib/libtsload.so]
[8971] process("/lib64/libpthread.so.0").mark("mutex_entry") 0xe1a628
 0x7fbcf9148fed : cv_wait+0x2d/0x2f [/opt/tsload/lib/libtscommon.so]
 0x7fbcf890f93f : tpd_wqueue_pick+0x44/0xbc [/opt/tsload/lib/libtsload.so]
[8971] process("/lib64/libpthread.so.0").mark("mutex_acquired") 0xe1a628

Note that thread with TID=8972 will acquire mutex in tpd_wqueue_put function and then
send a broadcast message to all workers. One of them (one with TID=8971) wakes up,
re-acquires mutex and gets request through tpd_wqueue_pick.

plockstat doesn't support many probes that glibc do, put we can easily replace them with
pid provider and function boundary tracing:

Script file scripts/dtrace/pthread.d

#!/usr/bin/dtrace
#pragma D option bufsize=8m
#pragma D option switchrate=100hz

pid$target::pthread_create:entry {

151Module 5: Application tracing

 self->thread_id_ptr = (uintptr_t) arg0;
 self->thread_func = arg2;
 self->thread_arg = arg3;
}
pid$target::pthread_create:return {
 this->thread_id = * (uint_t*) copyin(self->thread_id_ptr, sizeof(uint_t));
 printf("[%d] pthread_create %x ", tid, this->thread_id);
 usym(self->thread_func);
 printf("(%x)\n", self->thread_arg);
}
pid$target::pthread_join:entry {
 self->thread_id = (uint_t) arg0;
 printf("[%d] pthread_join %x\n", tid, self->thread_id);
}
pid$target::pthread_join:return {
 printf("[%d] pthread_join:return %x -> %d\n", tid, self->thread_id, arg1);
}

plockstat$target:::,
pid$target::pthread_cond_*wait*:entry,
pid$target::pthread_cond_*wait*:return,
pid$target::pthread_cond_signal:entry,
pid$target::pthread_cond_broadcast:entry {
 printf("[%d] %s:%s ", tid, probefunc, probename);
 usym(arg0);
 printf("[%p]\n", arg0);
 ustack(6);
}

That script yields similar results on Solaris:
[7] mutex_lock_impl:mutex-acquire 0x46d4a0 [46d4a0]
 libtsload.so`tpd_wqueue_put+0x26
[7] cond_signal:entry 0x46d4e0 [46d4e0]
[7] mutex_unlock_queue:mutex-release 0x46d4a0 [46d4a0]
[7] mutex_unlock_queue:mutex-release 0x46d4a0 [46d4a0]
[6] mutex_lock_impl:mutex-acquire 0x46d4a0 [46d4a0]
 libtsload.so`tpd_wqueue_pick+0xb6
[6] pthread_cond_wait:return 0x15 [15]

References

• glibc documentation on SystemTap probes
• plockstat Provider

Exercise 6
Implement two scripts: mtxtime.d and mtxtimd.stp that would compute delay between

attempt to acquire a userspace mutex and a moment when mutex is acquired. Group times by
user stacks and print data as logarithmic histograms.

Use pthread experiment to demonstrate your scripts, like in previous section, TSLoad
workload generator itself would be an object in the experiment. Try to identify mutexes that
show delays larger than 1 ms.

Module 5: Application tracing152

https://sourceware.org/git/?p=glibc.git;a=blob;f=nptl/DESIGN-systemtap-probes.txt
http://docs.oracle.com/cd/E19253-01/817-6223/chp-plockstat/index.html

Warning

To prevent problems with symbol resolving in DTrace after tracing process finishes, you can attach to a function
experiment_unconfigure() from tsexperiment to print gathered data.

Java Virtual Machine
DTrace and SystemTap are intended to trace applications written in native languages like C

or C++ and dependent on compiler ABIs. If application requires virtual machine (in case it is
interpreted or translated on-the-fly), virtual machine has to implement USDT probes so it can
be traceable by DTrace or SystemTap. For example Zend PHP keeps call arguments in a
global object, so you have to access that object to get arguments values instead of using
arg0-argN syntax.

Same works for Java Virtual Machine. Oracle's implementation of JVM, called Hotspot and
OpenJDK, which based on Hotspot support DTrace since version 1.6. It is available through
hotspot and hotspot_jni providers. Latter is intended for tracing of Java Native Interface,
so we leave it out of our scope.

By default hotspot provider allows to trace only rare events, such as class loading, starting
and stopping threads, VM-wide and GC-wide events and JIT compiler events. That was done
to reduce overheads of USDT probes. For example, to trace methods, compiler has to inject
two calls into produced code:

To enable additional probes, use following java command line options:

• -XX:+DTraceMethodProbes –- enables function boundary tracing for methids
• -XX:+DTraceAllocProbes –- enables tracing of object allocation and deallocation
• -XX:+DTraceMonitorProbes –- enables object monitors tracing
• -XX:+ExtendedDTraceProbes –- enables all of events listed above

These options can be set dynamically for running virtual machine using jinfo tool.

Tracing provider is implemented in shared library libjvm.so which is dynamically loaded
using dlopen() call. Due to limitations of pid$$ provider we mentioned before, dtrace
cannot use hotspot$target syntax directly:

153Module 5: Application tracing

public void inc() {
 this.i += 1;
}

0: aload_0
1: dup
2: getfield #2 .
...

SharedRuntime::
dtrace_method_entry()

… x86 CODE …

SharedRuntime::
dtrace_method_exit()

javac

JVM

hotspot.method_entry
hotspot$target:::method-entry

hotspot.method_return
hotspot$target:::method-return

.class
.java

dtrace -c 'java Test' -n 'hotspot$target:::'
dtrace: invalid probe specifier hotspot$target:::: probe description →
 hotspot3662::: does not match any probes

To launch tracing, use helper script dtrace_helper.d: it stops execution of JVM (using
stop() destructive action) when it loads libjvm.so through dlopen() and restarts
execution of JVM only when tracing script is up and running. Moreover, starting with JDK7,
Solaris builds of JDK will use -xlazyload linker flag. Due to that, JVM won't register
probes automatically until dtrace is attached to it explicitly with -p options so hotspot
probes will be missing from dtrace -l outputs. -p option will work as expected:
dtrace -p 3682 -n 'hotspot$target:::'
dtrace: description 'hotspot$target:::' matched 66 probes

-Z option can also be helpful.

JDK shipped in openjdk packages in RHEL-like operating systems supports hotspot
tracing too. SystemTap provides its probes through hotspot tapset which doesn't have such
limitations and can be used directly:
stap -e 'probe hotspot.* { println(pn()); }' -c 'java Test'

Let's write small program, called Greeter which will write "Hello, DTrace" from four
threads. Its implementation is based on Greeter from Solaris Internals wiki with small
difference: Greeting.greet() method uses synchronized keyword so it will use monitor.

Script file scripts/src/java/Greeting.java

public class Greeting {
 public synchronized void greet() {
 System.out.println("Hello, DTrace!");
 }
}

Script file scripts/src/java/GreetingThread.java

class GreetingThread extends Thread {
 Greeting greeting;

 GreetingThread(Greeting greeting) {
 this.greeting = greeting;
 super.setDaemon(true);
 }

 public void run() {
 while(true) {
 greeting.greet();
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 }
 }
 }
}

Script file scripts/src/java/Greeter.java

public class Greeter {
 public static void main(String[] args) {
 Greeting greeting = new Greeting();
 GreetingThread threads[] = new GreetingThread[4];

Module 5: Application tracing154

http://www.solarisinternals.com/wiki/index.php/DTrace_Topics_Java

 for(int i = 0; i

Here are small tracer for it implemented with SystemTap:

Script file scripts/stap/hotspot.stp

#!/usr/bin/stap

probe hotspot.class_loaded
{
 printf("%12s [???] %s\n", name, class);
}

probe hotspot.method_entry, hotspot.method_return
{
 printf("%12s [%3d] %s.%s\n", name, thread_id, class, method);
}

probe hotspot.thread_start, hotspot.thread_stop
{
 printf("%12s [%3d] %s\n", name, id, thread_name);
}

probe hotspot.monitor_contended_enter, hotspot.monitor_contended_exit
{
 printf("%12s [%3d] %s\n", name, thread_id, class);
}

Similar script on DTrace will look like this and should use dtrace_helper.d or called
with -Z option:

Script file scripts/dtrace/hotspot.d

#!/usr/sbin/dtrace -qs

#pragma D option switchrate=10hz

hotspot$target:::class-loaded
{
 printf("%12s [???] %s\n", probename, stringof(copyin(arg0, arg1)));
}

hotspot$target:::method-entry,
hotspot$target:::method-return
{
 printf("%12s [%3d] %s.%s\n", probename, arg0,
 stringof(copyin(arg1, arg2)),
 stringof(copyin(arg3, arg4)));
}

hotspot$target:::thread-start,
hotspot$target:::thread-stop
{
 printf("%12s [%3d] %s\n", probename, arg3,
 stringof(copyin(arg0, arg1)));
}

hotspot$target:::monitor-contended-enter,

155Module 5: Application tracing

hotspot$target:::monitor-contended-exit
{
 printf("%12s [%3d] %s\n", probename, arg0,
 stringof(copyin(arg2, arg3)));
}

Note that we are using copyin function to copy strings from userspace instead of
copyinstr. That is because hotspot probes pass strings as non-null-terminated. Due to that, it
will use additional argument to pass string length.

Here are examples of this script outputs:
class-loaded [???] Test
...
class-loaded [???] Greeting
...
class-loaded [???] GreetingThread
...
thread-start [14] Thread-1
method-entry [9] GreetingThread.run
method-entry [9] Greeting.greet
...
monitor-contended-exit [8] Greeting
method-return [8] Greeting.greet
method-entry [8] java/lang/Thread.sleep
method-return [9] java/lang/Thread.sleep
monitor-contended-enter [9] Greeting
method-entry [9] Greeting.greet
method-entry [9] java/io/PrintStream.println

You can see that when thread leaves Thread.sleep() method, it acquires monitor of
Greeting object, calls Greeting.greet() method which will call
PrintStream.println() method to output line.

Here are list of probes provided by JVM in hotspot$target DTrace provider and
hotspot tapset:

Action DTrace SystemTap

JVM

Start vm-init-begin
vm-init-end

hotspot.vm_init_begin
hotspot.vm_init_end

Shutdown vm-shutdown hotspot.vm_shutdown

Threads

Start thread-start

• arg0:arg1 — thread name
• arg2 — internal JVM thread's

identifier
• arg3 — system's thread

identifier (LWP id)
• arg4 — is thread a daemon?

hotspot.thread_start

• thread_name — thread name
• id — internal JVM thread's identifier
• native_id — system's thread identifier

(task id)
• is_daemon — is thread a daemon?

Stop thread-stop
Arguments are same as for
thread-start

hotspot.thread_stop
Arguments are same as for
hotspot.thread_start

Methods

Module 5: Application tracing156

Action DTrace SystemTap

Call method-entry

• arg0 — internal JVM thread's
identifier

• arg1:arg2 — class name
• arg3:arg4 — method name
• arg5:arg6 — method signature

hotspot.method_entry

• thread_id — internal JVM thread's
identifier

• class — class name
• method — method name
• sig — method signature

Return method-return Arguments are same
as for method-entry
hotspot.method_return

Arguments are same as for
hotspot.method_entry

Class loader

Load class-loaded

• arg0:arg1 — class name
• arg2 — class loader id
• arg3 — does class originate

from shared archive?

hotspot.class_loaded

• class — class name
• classloader_id — class loader id
• is_shared — does class originate from

shared archive?

Monitors (locks)

Attempt to acquire monitor-contended-enter arg0 —
Java thread id arg1 — unique
monitor id arg2:arg3 — class name

hotspot.monitor_contended_enter
thread_id — Java thread id id — unique
monitor id class — class name

Acquire monitor-contended-entered
Arguments are same as for
monitor-contended-enter

hotspot.monitor_contended_entered
Arguments are same as for
monitor_contended_enter

Release monitor-contended-exit
Arguments are same as for
monitor-contended-enter

hotspot.monitor_contended_exit
Arguments are same as for
monitor_contended_enter

Monitors (events)

Entering .wait() monitor-wait
Arguments are same as for
monitor-contended-enter with one
addition: arg4 keeps timeout

hotspot.monitor_wait
Arguments are same as for
monitor_contended_enter with one addition:
timeout variable keeps timeout

Leaving .wait() monitor-waited
Arguments are same as for
monitor-contended-enter

hotspot.monitor_waited
Arguments are same as for
monitor_contended_enter

.notify() monitor-notify
Arguments are same as for
monitor-contended-enter

hotspot.monitor_notify
Arguments are same as for
monitor_contended_enter

.notifyAll() monitor-notifyAll
Arguments are same as for
monitor-contended-enter

hotspot.monitor_notifyAll
Arguments are same as for
monitor_contended_enter

Allocator and garbage collector

GC cycle has been
started

gc-begin

• arg0 — is this cycle full?

hotspot.gc_begin

• is_full — is this cycle full

GC cycle has been
finished

gc-end hotspot.gc_end

157Module 5: Application tracing

Action DTrace SystemTap

Garbage collection
is initiated for
memory pool

mem-pool-gc-begin

• arg0:arg1 — name of manager
• arg2:arg3 — name of memory

pool
• arg4 — initial pool size
• arg5 — used memory
• arg6 — number of commited

pages
• arg7 — maximum usable

memory

hotspot.mem_pool_gc_begin

• manager — name of manager
• pool — name of memory pool
• initial — initial pool size
• used — used memory
• committed — number of commited pages
• max — maximum usable memory

Garbage collection
is finished in a
memory pool

mem-pool-gc-end Arguments are
same as for mem-pool-gc-begin

hotspot.mem_pool_gc_end Arguments are
same as for hotspot.mem_pool_gc_begin

JIT compiler

Start of method
compilation

method-compile-begin arg0:arg1 —
compiler name arg2:arg3 — class
name arg4:arg5 — method name
arg6:arg7 — method signature

hotspot.method_compile_begin compiler —
compiler name class — class name method —
method name sig — method signature

Ending of method
compilation

method-compile-end
Arguments are same as for
method-compile-begin. with one
addition: arg8 keeps compilation
result

hotspot.method_compile_end
Arguments are same as for
hotspot.method_compile_begin. with one
addition: $arg9 keeps compilation result

Load of compiled
method

compiled-method-load

• arg0:arg1 — class name
• arg2:arg3 — method name
• arg4:arg5 — method signature
• arg6 — instruction pointer
• arg7 — size of compiled code

hotspot.compiled_method_load

• class — class name
• method — method name
• sig — method signature
• code — instruction pointer
• size — size of compiled code

Unload of
compiled method

compiled-method-unload

• arg0:arg1 — class name
• arg2:arg3 — method name
• arg4:arg5 — method signature

hotspot.compiled_method_unload

• class — class name
• method — method name
• sig — method signature

In addition to provided probe arguments, SystemTap will supply name which will contain
probe name, and probestr which keeps string with pre-formatted probe arguments. There
are also several probes that are not documented: such as class-initialization-* and
thread probes: thread-sleep-*, thread-yield.

SystemTap and DTrace can also collect backtraces of a running Java thread. DTrace
provide jstack() function for that:
dtrace -n '
 syscall::write:entry
 / execname == "java" /
 { jstack(); }'

SystemTap needs to gather some information about VM to build stack traces correctly, so it
needs to bind to probe hotspot.vm_init_end, so print_jstack() will work only if you
run SystemTap with -c option:
stap -e '
 probe syscall.write {

Module 5: Application tracing158

 if(pid() == target())
 print_jstack();
 } ' -c 'java Test'

However, you can alter source code of jstack tapset to use other global events and use
jstack() on live processes.

Warning

There is a bug in JDK: JDK-7187999: dtrace jstack action is broken. Due to it, jstack() won't work for Java7
in Solaris 11. One of workarounds is to try to seek for available probes in a process:

dtrace -P fooJava-PID

That attempt will fail, but it will lead DTrace to extract required helper functions from Java process.

JSDT

You could notice that we can't extract method's arguments in method probes like we did it
in other places via args array. That complicates Java application tracing. As you can
remember from USDT description, in DTrace applications can register their probes within
DTrace. This is also true for Java applications which can provide Java Statically Defined
Tracing probes (JSDT). It is supported only in DTrace and only in BSD or Solaris.

JSDT is implemented in packages com.sun.tracing and sun.tracing. Each provider
should be a class which implements com.sun.tracing.Provider interface, while each
method of this class will be a probe. Reimplement our greeting example with JSDT support:

Script file scripts/src/jsdt/Greeting.java

public class Greeting {
 GreetingProvider provider;

 public Greeting(GreetingProvider provider) {
 this.provider = provider;
 }

 public void greet(int greetingId) {
 provider.greetingStart(greetingId);
 System.out.println("Hello DTrace!");
 provider.greetingEnd(greetingId);
 }
}

Script file scripts/src/jsdt/GreetingProvider.java

import com.sun.tracing.Provider;

public interface GreetingProvider extends Provider {
 public void greetingStart(int greetingId);
 public void greetingEnd(int greetingId);
}

Script file scripts/src/jsdt/JSDT.java

import com.sun.tracing.*;

public class JSDT {
 static public void main(String[] args) {
 ProviderFactory providerFactory =

159Module 5: Application tracing

https://bugs.openjdk.java.net/browse/JDK-7187999

 new sun.tracing.dtrace.DTraceProviderFactory();
 GreetingProvider greetingProvider = (GreetingProvider)
 providerFactory.createProvider(GreetingProvider.class);

 Greeting greeter = new Greeting(greetingProvider);

 for(int id = 0; id

Package sun.tracing is treated as "closed", so you will need to pass an option to javac
to compile JSDT:
$ javac -XDignore.symbol.file JSDT.java

You can see that our provider was registered within DTrace when we start JSDT example
and we can trace it:
root@sol11:~/java1/hs1# dtrace -l | grep GreetingProvider
69255 GreetingProvider3976 java_tracing unspecified →
 greetingStart
69256 GreetingProvider3976 java_tracing unspecified →
 greetingEnd
root@sol11:~/java1/hs1# dtrace -n 'greetingStart { trace(arg0); }'
dtrace: description 'greetingStart ' matched 1 probe
CPU ID FUNCTION:NAME
 0 69255 unspecified:greetingStart 61

P.S.: Of course, DTrace and SystemTap are not the only option to trace Java. It provides
JVMTI interface since Java 6 which allows to instrument Java applications as well. Most
famous implementation of JVMTI is BTrace.

Non-native languages
As DTrace became popular, many language interpreters got USDT probes. Some of them

adopted them in upstream, some probes are provided by the binaries custom packages
shipped with operating system. The basic pair of probes provided by most language
interpreters are function entry and exit probes which provide name of the function, line
number and file name. For example, Perl can be traced that way:
echo 'use Data::Dumper;
 map { Dumper($_, ", ") } ("Hello", "world");' |
 dtrace -n '
 perl$target:::sub-entry {
 trace(copyinstr(arg0)); trace(copyinstr(arg1)); trace(arg2);
 } ' -c 'perl -- -'
stap -e '
 probe process("/usr/lib64/perl5/CORE/libperl.so").mark("sub__entry") {
 printdln(" : ", user_string($arg1), user_string($arg2), $arg3);
 }
 ' -c $'perl -e \'use Data::Dumper;
 map { Dumper($_, ", ") } ("Hello", "world");\''

Note that we had to use stdin as a script in DTrace example. That happened because DTrace
cannot parse -c option value in shell-like manner.

Language interpreters provide not only function entry probes, here are other examples of
supplied probes:

• Function entry and exit probes.
• In PHP and Python –- function-entry/function-return.

Module 5: Application tracing160

• In Perl –- sub-entry/sub-return.
• In Ruby –- method-entry/method-return.
• In Tcl –- proc-entry/proc-return.

• Probes that fire inside function: line in Python which corresponds to a interpreted line
and execute-entry/execute-return, which fire per each Zend interpreter VM operation.

• Probes of file execution and compilation: such as
compile-file-entry/compile-file-return in PHP and loading-file/loaded-file in
Perl

• Error and exception probes: raise in Ruby and
exception-thrown/exception-caught/error in PHP

• Object creation probes: obj-create/obj-free in Tcl,
instance-new-*/instance-delete-* in Python,
object-create-start/object-create-done/object-free in Ruby

• Garbage collector probes: gc-start/gc-done in Python, gc-*-begin/gc-*-end in
Ruby 2.0 or gc-begin/gc-end in Ruby 1.8

Here are list of availability of that probes in various interpreters shipped as binary packages.
If you lack them, you may want to rebuild interpreters with some configure option like
--enable-dtrace.

Interpreter CentOS Solaris

Python 2 Python has never accepted DTrace patches into upstream. However, it was
implemented by Solaris developers for Python 2.4, and being ported to Fedora's
and CentOS python. Only function-related probes are supplied: function-entry
and function-return.

Python 3 Like Python 2, Python 3 in CentOS (if
installed from EPEL) supports
function__entry and function__return
probes. In addition to that, SystemTap
supplies example python3 tapset.

Python 3 is supplied as FOSS
(unsupported) package in Solaris 11
and has line probe, instance
creation and garbage-collector
related probes.

Starting with Python 3.6, DTrace probes function entry and exit probes, garbage
collector probes and line are supported by vanilla interpreter

PHP5 Doesn't support USDT tracing but can it be
enabled via --enable-dtrace switch
when it is built from source.

PHP supports tracing functions,
exceptions and errors, VM opcodes
execution and file compiling from
scratch. Its probes will be discussed
in the following section, Web
applications.

Ruby 2 Supports multiple probes including object creation, method entry and exit points
and garbage collector probes in Ruby 2.0 in CentOS or Ruby 2.1 as FOSS package
in Solaris 11.

Perl 5 Supports subroutine probes sub-entry and sub-return (see examples above).

Go Go is pretty close to native languages in
Linux, so you can attach probes directly to
its functions while backtraces show correct
function names. Differences in type system
between C-based languages and Go,
however prevents SystemTap from
accessing arguments.

Go has experimental support for
Solaris so it is not considered as a
target for DTrace.

161Module 5: Application tracing

Interpreter CentOS Solaris

Erlang Neither EPEL nor Solaris package feature USDT probes in BEAM virtual
machine, but they are supported in sources, so building with
--with-dynamic-trace option enables various probes including
function-boundary probes.

Node.JS Node.JS is not supplied as OS packages, while binaries from official site doesn't
have USDT enabled in Linux or simply not working in Oracle Solaris (only in
Illumos derivatives). Building from sources, however adds global network-related
probes like http-server-request. Function boundary tracing is not supported.

Most interpreted language virtual machines still rely on libc to access basic OS facilities
like memory allocation, but some may use their own: i.e. PyMalloc in Python, Go runtime is
OS-independent in Go language. For example let's see how malloc calls may be
cross-referenced with Python code in yum and or pkg package managers using SystemTap or
DTrace. We will need to attach to function entry and exit points to track "virtual" python
backtrace and malloc call to track amount of allocated bytes. This approach is implemented
in the following couple of scripts:

Script file scripts/dtrace/pymalloc.d

#!/usr/sbin/dtrace -qCZs

BEGIN {
 self->depth = 0;
}

foo$target::: {
 /* This probe is just a workaround for -xlazyload */
}

python$target:::function-entry {
 func_stack[self->depth] = arg1;
 file_stack[self->depth] = arg0;

 self->depth++;
}
python$target:::function-return {
 self->depth--;
}

pid$target::malloc:entry
/ func_stack[self->depth] != 0 / {
 @mallocs[copyinstr(func_stack[self->depth]),
 copyinstr(file_stack[self->depth])] = sum(arg0);
}

Script file scripts/stap/pymalloc.stp

#!/usr/bin/env stap

@define libc %("/lib64/libc.so.6" %)

global file_stack, func_stack, mallocs, thread_depth

probe python.function.entry {
 thread_depth[tid()]++;

Module 5: Application tracing162

 depth = thread_depth[tid()];
 file_stack[tid(), depth] = filename;
 func_stack[tid(), depth] = funcname;
}

probe python.function.return {
 thread_depth[tid()]--;
}

probe process(@libc).function("_int_malloc") {
 depth = thread_depth[tid()];
 mallocs[file_stack[tid(), depth],
 func_stack[tid(), depth]]

Note

We have used non-existent foo provider in DTrace example because like JVM, Python is linked with
-xlazyload linker flag, so we apply same workaround to find probes that we used in Java Virtual Machine
section.

Arguments and local variables are also inaccessible directly by SystemTap or DTrace when
program in non-native language is traced. That happens because they are executed within
virtual machine which has its own representation of function frame which is different from
CPU representation: languages with dynamic typing are more likely to keep local variables in
a dict-like object than in a stack. These frame and dict-like objects, however, are usually
implemented in C and available for dynamic tracing. All that you have to do is to provide
their layout.

Let's see how this can be done for Python 3 in Solaris and Linux. If you try to get backtrace
of program interpreted by Python 3, you will probably see function named
PyEval_EvalCodeEx which is responsible for evaluation of code object. Code object itself
has type PyCodeObject and passed as first argument of that function. That structure has
fields like co_firstlineno, co_name and co_filename. Last two fields not just C-style
strings but kind of PyUnicodeObject –- an object which represents strings in Python 3. It
have multiple layouts, but we rely on the simplest one: compacted ASCII strings. That may
not be true for all string objects in the program, but that works fine for objects produced by
the interpreter itself like code objects.

DTrace cannot recognize type information from Python libraries, but it supports struct
definitions in the code. We will use it to provide PyCodeObject and PyUnicodeObject
layouts in a separate file pycode.h. DTrace syntax is pretty much like C syntax, so these
definitions are almost copy-and-paste from Python sources. Here is an example of DTrace
scripts which trace python program execution:

Script file scripts/dtrace/pycode.h

#ifndef PY_CODE_H
#define PY_CODE_H

/**
 * This is forward definitions taken from Include/object.h and Include/code.h
 * to support extraction of Python 3.4 interpreter state
 */

typedef long ssize_t;

typedef struct _object {
163Module 5: Application tracing

 /* _PyObject_HEAD_EXTRA */
 ssize_t ob_refcnt;
 struct PyObject *ob_type;
} PyObject;

/* Bytecode object */
typedef struct _code {
 PyObject base;
 int co_argcount; /* #arguments, except *args */
 int co_kwonlyargcount; /* #keyword only arguments */
 int co_nlocals; /* #local variables */
 int co_stacksize; /* #entries needed for evaluation stack */
 int co_flags; /* CO_..., see below */
 PyObject *co_code; /* instruction opcodes */
 PyObject *co_consts; /* list (constants used) */
 PyObject *co_names; /* list of strings (names used) */
 PyObject *co_varnames; /* tuple of strings (local variable names) */
 PyObject *co_freevars; /* tuple of strings (free variable names) */
 PyObject *co_cellvars; /* tuple of strings (cell variable names) */
 /* The rest doesn't count for hash or comparisons */
 unsigned char *co_cell2arg; /* Maps cell vars which are arguments. */
 PyObject *co_filename; /* unicode (where it was loaded from) */
 PyObject *co_name; /* unicode (name, for reference) */
 int co_firstlineno; /* first source line number */
 PyObject *co_lnotab; /* string (encoding addrlineno mapping) See
 Objects/lnotab_notes.txt for details. */
 void *co_zombieframe; /* for optimization only (see frameobject.c) */
 PyObject *co_weakreflist; /* to support weakrefs to code objects */
} PyCodeObject;

/**
 * Compact ASCII object from Python3 -- data starts after PyUnicodeObject -- →
 only if compact, ascii
 * and ready flags are set
 */
typedef struct _unicode {
 PyObject base;
 ssize_t length;
 ssize_t hash;
 char flags[4];
 void* wstr;
} PyUnicodeObject;

#endif

Script file scripts/dtrace/pycode.d

#!/usr/sbin/dtrace -Cs

#include "pycode.h"

#define GET_Py3_STRING(obj) (((PyUnicodeObject*) copyin((uintptr_t) obj, →
 \
 sizeof(PyUnicodeObject)))->flags[0] →
 0xE0) \
 ? copyinstr(((uintptr_t) obj) + sizeof(PyUnicodeObject)) : ""

foo$target::: {}

Module 5: Application tracing164

pid$target::PyEval_EvalCodeEx:entry {
 self->co = (PyCodeObject*) copyin(arg0, sizeof(PyCodeObject));

 trace(GET_Py3_STRING(self->co->co_filename));
 trace(GET_Py3_STRING(self->co->co_name));
 trace(self->co->co_firstlineno);
}

Note

Similar mechanism is used in so-called ustack helpers in DTrace. That allows to build actual backtraces of
Python or Node.JS programs when you use jstack() action.

SystemTap can extract type information directly from DWARF section of shared libraries
so all we need to do to achieve same effect in it is to use @cast expression:

Script file scripts/stap/pycode.stp

#!/usr/bin/env stap

@define PYTHON3_LIBRARY %("/usr/lib64/libpython3.4m.so.1.0" %)

function get_py3_string:string(uo: long) {
 flags = user_uint32(@cast(uo, "PyASCIIObject", @PYTHON3_LIBRARY)->state);
 if(flags 0xE0) {
 size = @cast(0, "PyASCIIObject", @PYTHON3_LIBRARY)[1]
 return user_string(uo + size);
 }

 return "???";
}

probe process(@PYTHON3_LIBRARY).function("PyEval_EvalCodeEx") {
 code = $_co;
 if(code) {
 printf("%s %s:%d\n",
 get_py3_string(@cast(code, "PyCodeObject", →
 @PYTHON3_LIBRARY)->co_name),
 get_py3_string(@cast(code, "PyCodeObject", →
 @PYTHON3_LIBRARY)->co_filename),
 @cast(code, "PyCodeObject", @PYTHON3_LIBRARY)->co_firstlineno);
 }
}

References

• Python: Bugs #4111, #13405 and #21590
• Perl: perldtrace
• PHP: Using PHP and DTrace
• Ruby: DTrace Probes
• Erlang: DTrace and Erlang/OTP

165Module 5: Application tracing

https://bugs.python.org/issue4111
https://bugs.python.org/issue13405
https://bugs.python.org/issue21590
http://perldoc.perl.org/perldtrace.html
http://www.php.net/manual/en/features.dtrace.dtrace.php
http://ruby-doc.org/core-2.1.0/doc/dtrace_probes_rdoc.html
http://erlang.org/doc/apps/runtime_tools/DTRACE.html

Web applications
Many interpreted languages that are used in Web development like Python, Perl, PHP and

Ruby implement USDT probes. Some HTTP servers like Apache HTTP server (there is also
an nginx fork, called nginx-dtrace) and databases such as MySQL, PostgreSQL and Berkeley
DB provide them too. Let's see how that can be used to trace a real web application like
Drupal CMS framework.

Warning

Despite that Apache HTTP server declares support of USDT probes, it is not supported by its build system (as
you can remember, you need to perform additional steps and build extra object file). Due to that, when you build
it, with --enable-dtrace option, you will see error message:

DTrace Support in the build system is not complete. Patches Welcome!

There is a patch written by Theo Schlossnagle that modifies build system properly, but it won't accepted. You
can find fresh version of it in a bug 55793.

An alternative of that is to use mod_dtrace module, but we won't discuss it in our book.

We will use Drupal with MySQL database running under Zend PHP interpreter in Apache
web-server in mod_php mode. You can also use PHP-FPM, but it makes requests mapping
harder as requests would be processed by different processes. In our case, without PHP-FPM,
web-application and http-server would be of same context:

You will need to use provider name to access PHP, MySQL and Apache HTTP Server
probes. Their naming convention is the same as any other USDT probe:
php*:::probe-name
mysql*:::probe-name
ap*:::probe-name

Same works for SystemTap: provider names are optional, but you will need to specify full
path to a binary file or use its name and setup PATH environment variable:
process("httpd").mark("probe__name")
process("mysqld").mark("probe__name")
process("libphp5.so").mark("probe__name")

We will use full paths in macros in example scripts.

Here are list of arguments and names of some useful Apache probes:

Module 5: Application tracing166

HTTP server

Request

Reply

Request
processing
by Drupal

Web application

SQL query

Database

process("httpd").mark("process__request__entry")
ap*:::process-request-entry

process("httpd").mark("process__request__return")
ap*:::process-request-return

process("libphp5.so").mark("request__startup")
php*:::request-startup

process("libphp5.so").mark("function__entry")
php*:::function-entry

process("mysqld").mark("query__exec__start")
mysql*:::query-exec-start

https://bz.apache.org/bugzilla/show_bug.cgi?id=55793

Action DTrace SystemTap

Request is
redirected

internal-redirect

• arg0 — old URI
• arg1 — new URI

internal__redirect

• $arg1 — old URI
• $arg2 — new URI

Request is read
from socket

read-request-entry

• arg0 — request_rec structure
• arg1 — conn_rec structure

read__request__entry

• $arg1 — request_rec structure
• $arg2 — conn_rec structure

read-request-success

• arg0 — request_rec structure
• arg1 — method (GET/POST/...)
• arg2 — URI
• arg3 — server name
• arg4 — HTTP status

read__request__success

• $arg1 — request_rec structure
• $arg2 — method (GET/POST/...)
• $arg3 — URI
• $arg4 — server name
• $arg5 — HTTP status

read-request-failure

• arg0 — request_rec structure

read__request__failure

• $arg1 — request_rec structure

Request is
processed

process-request-entry

• arg0 — request_rec structure
• arg1 — URI

process__request__entry

• $arg1 — request_rec structure
• $arg2 — URI

process-request-return

• arg0 — request_rec structure
• arg1 — URI
• arg2 — HTTP status

process__request__return

• $arg1 — request_rec structure
• $arg2 — URI
• $arg3 — HTTP status

Warning

When read-request-entry/read__request__entry probe is firing, request_rec structure fields is not yet
filled.

There are also many Apache Hooks probes, but they are not providing useful arguments.

Following table provides list of useful PHP SAPI probes:

Action DTrace SystemTap

Request processing

Request processing
started

request-startup

• arg0 — file name
• arg1 — request URI
• arg2 — request method

request__startup

• $arg1 — file name
• $arg2 — request URI
• $arg3 — request method

Request processing
finished

request-shutdown
Arguments are same as for
request-startup

request__shutdown
Arguments are same as for
request__startup

Compiler

Compilation compile-file-entry

• arg0 — source file name
• arg1 — compiled file name

compile__file__entry

• $arg1 — source file name
• $arg2 — compiled file name

File is compiled compile-file-return
Arguments are same as for
compile-file-entry

compile__file__return
Arguments are same as for
compile__file__entry

Functions

167Module 5: Application tracing

Action DTrace SystemTap

Function call function-entry

• arg0 — function name
• arg1 — file name
• arg2 — line number
• arg3 — class name
• arg4 — scope operator ::

function__entry

• $arg1 — function name
• $arg2 — file name
• $arg3 — line number
• $arg4 — class name
• $arg5 — scope operator ::

Function return function-return
Arguments are same as for
function-entry

function__return
Arguments are same as for
function__entry

VM execution

Beginning of operation
execution

execute-entry

• arg0 — file name
• arg1 — line number

execute__entry $arg1 — file name
$arg2 — line number

Beginning of operation
execution

execute-return

• Arguments are same as for
execute-entry

execute__return

• Arguments are same as for
execute__entry

Errors and exceptions

PHP error error

• arg0 — error message
• arg1 — file name
• arg2 — line number

error

• $arg1 — error message
• $arg2 — file name
• $arg3 — line number

Thrown exception exception-thrown arg0 — exception
class name

exception__thrown arg0 — exception
class name

Caught exception exception-caught

• Arguments are same as for
exception-thrown

exception__caught

• Arguments are same as for
exception__thrown

MySQL has wide set of probes. They are described in MySQL documentation: 5.4.1
mysqld DTrace Probe Reference. Here are list of basic probes which allow to trace queries
and connections:

Action DTrace SystemTap

Connection connection-start

• arg0 — connection number
• arg1 — user name
• arg2 — host name

connection__start

• $arg1 — connection number
• $arg2 — user name
• $arg3 — host name

connection-done

• arg0 — connection status
• arg1 — connection number

connection__done

• $arg1 — connection status
• $arg2 — connection number

Query parsing query-parse-start

• arg0 — query text

query__parse__start

• $arg1 — query text

query-parse-done

• arg0 — status

query__parse__done

• $arg1 — status

Module 5: Application tracing168

http://dev.mysql.com/doc/refman/5.7/en/dba-dtrace-mysqld-ref.html
http://dev.mysql.com/doc/refman/5.7/en/dba-dtrace-mysqld-ref.html

Action DTrace SystemTap

Query execution query-exec-start

• arg0 — query text
• arg1 — connection number
• arg2 — database name
• arg3 — user name
• arg4 — host name
• arg5 — source of request (cursor,

procedure, etc.)

query__exec__start

• $arg1 — query text
• $arg2 — connection number
• $arg3 — database name
• $arg4 — user name
• $arg5 — host name
• $arg6 — source of request (cursor,

procedure, etc.)

query-exec-done

• arg0 — status

query__exec__done

• $arg1 — status

Here are simple tracer for PHP web application which is written on SystemTap:

Script file scripts/stap/web.stp

@define httpd %("/usr/local/apache2/bin/httpd" %)
@define libphp5 %("/usr/local/apache2/modules/libphp5.so" %)
@define mysqld %("/usr/local/mysql/bin/mysqld" %)

global parsequery;
global execquery;

function basename:string(s:string) {
 len = strlen(s)
 i = len

 while(i > 0) {
 /* 47 is code for '/' */
 if(stringat(s, i - 1) == 47)
 return substr(s, i, len - i);

 --i;
 }

 return s;
}

probe process(@httpd).mark("internal__redirect") {
 printf("[httpd] redirect\t'%s' -> '%s'\n",
 user_string($arg1), user_string($arg2));
}

probe process(@httpd).mark("read__request__entry") {
 printf("[httpd] read-request\n");
}

probe process(@httpd).mark("read__request__success") {
 servername = ($arg4) ? user_string($arg4) : "???";

 printf("[httpd] read-request\t%s %s %s [status: %d]\n",
 user_string($arg2), servername, user_string($arg3), $arg5);
}

probe process(@httpd).mark("process__request__entry") {
 printf("[httpd] process-request\t'%s'\n", user_string($arg2));
}

169Module 5: Application tracing

probe process(@httpd).mark("process__request__return") {
 printf("[httpd] process-request\t'%s' access-status: %d\n",
 user_string($arg2), $arg3);
}

probe process(@libphp5).mark("request__startup"),
 process(@libphp5).mark("request__shutdown") {
 printf("[PHP] %s\n\t%s '%s' file: %s \n", pn(), user_string($arg3),
 user_string($arg2), user_string($arg1));
}

probe process(@libphp5).mark("function__entry"),
 process(@libphp5).mark("function__return") {
 printf("[PHP] %s\n\t%s%s%s file: %s:%d \n", pn(),
 user_string($arg4), user_string($arg5), user_string($arg1),
 basename(user_string($arg2)), $arg3);
}

probe process(@mysqld).mark("query__parse__start") {
 parsequery[tid()] = user_string_n($arg1, 1024);
}

probe process(@mysqld).mark("query__parse__done") {
 printf("[MySQL] query-parse\t'%s' status: %d\n", parsequery[tid()], $arg1);
}

probe process(@mysqld).mark("query__exec__start") {
 execquery[tid()] = user_string_n($arg1, 1024);
}

probe process(@mysqld).mark("query__exec__done") {
 printf("[MySQL] query-exec\t'%s' status: %d\n", execquery[tid()], $arg1);
}

If you run it and try to access index page of Drupal CMS with your web-browser, you will
see similar traces:
[httpd] read-request
[httpd] read-request GET ??? →
 /drupal/modules/contextual/images/gear-select.png [status: 200]
[httpd] process-request '/drupal/modules/contextual/images/gear-select.png'
[httpd] process-request '/drupal/modules/contextual/images/gear-select.png' →
 access-status: 304
[httpd] read-request
[httpd] read-request GET ??? /drupal/ [status: 200]
[httpd] process-request '/drupal/'
[PHP] request-startup GET '/drupal/index.php' file: →
 /usr/local/apache2/htdocs/drupal/index.php
[PHP] function-entry main file: index.php:19
[PHP] function-return main file: index.php:19
…
[PHP] function-entry DatabaseStatementBase::execute file: database.inc:680
[MySQL] query-parse 'SELECT u.*, s.* FROM users u INNER JOIN sessions s ON →
 u.uid = s.uid WHERE s.sid = 'yIR5hLWScBNAfwOby2R3FiDfDokiU456ZE-rBDsPfu0'' status: 0
[MySQL] query-exec 'SELECT u.*, s.* FROM users u INNER JOIN sessions s ON →
 u.uid = s.uid WHERE s.sid = 'yIR5hLWScBNAfwOby2R3FiDfDokiU456ZE-rBDsPfu0'' status: 0
...

Module 5: Application tracing170

[PHP] request-shutdown GET '/drupal/index.php' file: →
 /usr/local/apache2/htdocs/drupal/index.php
[httpd] process-request '/drupal/index.php' access-status: 200

As you can see from this trace, there is a request of a static image gear-select.png which
is resulted in status 304 and a dynamic page index.php which eventually accesses database
to check user session.

Warning

You will need to restart Apache HTTP server after you start web.stp script.

Due to high amounts of script outputs, you will need to increase buffers in DTrace. The rest
of script will look similar to web.stp:

Script file scripts/dtrace/web.d

#pragma D option strsize=2048
#pragma D option bufsize=128M
#pragma D option switchrate=20hz

ap*:::internal-redirect {
 printf("[httpd] redirect\t'%s' -> '%s'\n", copyinstr(arg0), →
 copyinstr(arg1));
}

ap*:::read-request-entry {
 printf("[httpd] read-request\n");
}

ap*:::read-request-success {
 this->servername = (arg3) ? copyinstr(arg3) : "???";

 printf("[httpd] read-request\t%s %s %s [status: %d]\n",
 copyinstr(arg1), this->servername, copyinstr(arg2), arg4);
}

ap*:::process-request-entry {
 printf("[httpd] process-request\t'%s'\n", copyinstr(arg1));
}

ap*:::process-request-return {
 printf("[httpd] process-request\t'%s' access-status: %d\n",
 copyinstr(arg1), arg2);
}

php*:::request-startup,
php*:::request-shutdown {
 printf("[PHP] %s\t%s '%s' file: %s \n", probename,
 copyinstr(arg2), copyinstr(arg1), copyinstr(arg0));
}

php*:::function-entry,
php*:::function-return {
 printf("[PHP] %s\t%s%s%s file: %s:%d \n", probename,
 copyinstr(arg3), copyinstr(arg4), copyinstr(arg0),
 basename(copyinstr(arg1)), arg2);
}

171Module 5: Application tracing

mysql*:::query-parse-start {
 self->parsequery = copyinstr(arg0, 1024);
}

mysql*:::query-parse-done {
 printf("[MySQL] query-parse\t'%s' status: %d\n", self->parsequery, arg0);
}

mysql*:::query-exec-start {
 self->execquery = copyinstr(arg0, 1024);
}

mysql*:::query-exec-done {
 printf("[MySQL] query-exec\t'%s' status: %d\n", self->execquery, arg0);
}

Exercise 7
Create two scripts: topphp.d and topphp.stp which will measure mean execution time

of each PHP function and count number of calls to that function. Group functions by request
URI and full function name including class name (if defined). Use drupal experiment to
demonstrate your script.

Note

It would be reasonable to run workload generator on system other than server (so it won't affect execution of
web applications). You can switch roles of virtual machines in lab environment i.e. use Solaris as server and
Linux as client and vice versa. To alter server's address, use -s option in tsexperiment command line:

/opt/tsload/bin/tsexperiment -e drupal/ run \
 -s workloads:drupal:params:server=192.168.13.102

Module 5: Application tracing172

Appendix A. Exercise hints and
solutions

Exercise 1
This exercise is intended to learn some features of dynamic tracing languages that was

discussed in modules 1 and 2. First of all we need to pick probes that we will use in our
tracing script. They would be parts of syscall provider/tapset. As you can remember from
stap command options, probe parameters can be checked with -L option:
stap -L 'syscall.open'
syscall.open name:string filename:string flags:long mode:long argstr:string →
 $filename:long int $flags:long int $mode:long int
stap -L 'syscall.open.return'
syscall.open.return name:string retstr:string $return:long int $filename:long →
 int $flags:long int $mode:long int

Same can be done for dtrace with -l option:
dtrace -l -f openat* -v
 ID PROVIDER MODULE FUNCTION NAME
14167 syscall openat entry
 ...

Return value (which would represent file descriptor number) will be saved into $return
variable in SystemTap and arg1 argument in DTrace. We will also need flags values: arg2
in DTrace (because they are going third in openat() prototype). In SystemTap you can use
either DWARF variable $flags or tapset variable flags. Latter is more stable.

Similarly, path to opened file will be passed as second openat() argument and will be
available in DTrace as arg1 or $filename/filename in SystemTap. At the moment of
system call, however, file path will be a string which is located in user address space, so to
get it in tracing script, you will need to copy it by using copyinstr() in DTrace or one of
user_string*() functions. Tapset variable already uses user_string_quoted() to access
variable, so we will use it in our scripts.

Note that data that we want gather is available in two different probes: flags and file path
are provided by entry probe, while file descriptor number can only be collected in return
probe (SystemTap can provide flags and file path in return probe, but as we mentioned, it
depends on compiler optimizations). Since both probes will be executed in the same context,

173Appendix A. Exercise hints and solutions

we can use thread-local variables.

Finally, stringifying flags will require usage of ternary operator ?: in DTrace or if/else
construct in SystemTap. To concatenate strings, use strjoin from DTrace or string
concatenation operator . in SystemTap.

Here are resulting DTrace script which implements required functionality:

Script file scripts/dtrace/opentrace.d

/* These constants are already defined in /usr/lib/dtrace/io.d
inline int O_WRONLY = 1;
inline int O_RDWR = 2;
inline int O_APPEND = 8;
inline int O_CREAT = 256;
*/

this string flag_str;

syscall::openat*:entry {
 self->path = copyinstr(arg1);
 self->flags = arg2;
}

syscall::openat*:return
{
 this->flags_str = strjoin(
 self->flags O_WRONLY
 ? "O_WRONLY"
 : self->flags O_RDWR
 ? "O_RDWR"
 : "O_RDONLY",
 strjoin(
 self->flags O_APPEND ? "|O_APPEND" : "",
 self->flags O_CREAT ? "|O_CREAT" : ""));

 printf("%s[%d(%d:%d)] open(\"%s\", %s) = %d\n",
 execname, pid, uid, gid,
 self->path, this->flags_str, arg1);
}

I have used sprintf() to concatenate strings in SystemTap version of a script:

Script file scripts/stap/opentrace.stp

global O_WRONLY = 1;
global O_RDWR = 2;
global O_APPEND = 1024;
global O_CREAT = 64;

global t_path, t_flags;

probe syscall.open {
 t_path[tid()] = filename;
 t_flags[tid()] = flags;
}

probe syscall.open.return {
 flags = t_flags[tid()];

Appendix A. Exercise hints and solutions174

 if(flags O_RDWR) {
 flags_str = "O_RDWR";
 }
 else if(flags O_WRONLY) {
 flags_str = "O_WRONLY";
 }
 else {
 flags_str = "O_RDONLY";
 }
 if(flags O_APPEND) {
 flags_str = sprintf("%s|%s", flags_str, "O_APPEND");
 }
 if(flags O_CREAT) {
 flags_str = sprintf("%s|%s", flags_str, "O_CREAT");
 }

 printf("%s[%d(%d:%d)] open(%s, %s) = %d\n",
 execname(), pid(), uid(), gid(),
 t_path[tid()], flags_str, $return);
}

Finally, you will need to add predicates to compare paths with /etc in DTrace by using
strstr() subroutine and comparing it with 0 and SystemTap's ininstr() function.

Exercise 2
We will have to use count() aggregation to count open() and openat() system calls. It

can be cleaned up from outdated data with trunc() action in DTrace or delete operation in
SystemTap. These scripts are roughly based on wstat.d and wstat.stp from aggregations
example.

To print current timestamp we can use %Y formatting specifier and walltimestamp
variable in DTrace. Same can be achieved with ctime() and gettimeofday_s() functions
from SystemTap. To print data periodically, we can use timer probes: timer.s($1) in
SystemTap or tick-$1s from DTrace. $1 here represents first command line argument.

Finally, we need to determine if open operation requests creation of file or not. We should
write predicate for that which tests flags passed to open for O_CREAT flag (we have learned
how to access flags in previous exercise).

Here are resulting scripts:

Script file scripts/dtrace/openaggr.d

syscall::openat*:entry
/(arg2 O_CREAT) == O_CREAT/ {
 @create[execname, pid] = count();
}

syscall::openat*:entry
/(arg2 O_CREAT) == 0/ {
 @open[execname, pid] = count();
}

syscall::openat*:return
/ arg1 > 0 / {
 @success[execname, pid] = count();
}

175Appendix A. Exercise hints and solutions

tick-$1s {
 printf("%Y\n", walltimestamp);
 printf("%12s %6s %6s %6s %s\n",
 "EXECNAME", "PID", "CREATE", "OPEN", "SUCCESS");
 printa("%12s %6d %@6d %@6d %@d\n", @create, @open, @success);
 trunc(@create); trunc(@open); trunc(@success);
}

Script file scripts/stap/openaggr.stp

global open, creat, success
global O_CREAT = 64;

probe syscall.open {
 if(flags O_CREAT)
 creat[execname(), pid()] = 0)
 success[execname(), pid()]

Exercise 3

Part 1

In the first part of this exercise we will need to check which fields of struct
task_struct in Linux or proc_t are responsible for which aspects of process functioning.
You will need to apply following changes to dump task scripts: timer probe has to be
replaced to a pair of probes: proc:::exec-* and proc:::exit in DTrace or
kprocess.exec_complete and kprocess.exit in SystemTap. We have used exit probes
for execve() system call to collect command line arguments: they are not filled in unless
execve() call finishes.

Here list of expected observations during this exercise:

• When you run program with extra argument, it will be cleared in main() function, so
you will see original argument in exec-probe, but only 'X' letters when program exits.

• When you run program through symbolic link lab3-1, VFS node which refer to a binary
file will point to a regular file lab3. That node is represented by p_exec field of proc_t in
Solaris or exe_file of task_struct in Linux. execname, however, will behave differently
in Solaris and Linux.

• When you run program in chroot environment, root process directory will change from /
to /tmp/chroot.

Here are resulting scripts (they are not much different from original):

Script file scripts/stap/dumptask-lab3.stp

/**
 * taskdump.stp
 *
 * Prints information about current task
 * Extracts data from `task_struct`
 *
 * Tested on CentOS 7.0
 */

/**
Appendix A. Exercise hints and solutions176

 * Structures `dentry` and `vfsmnt` were separate in older kernels.
 * Newer kernels feature unified `path` structures that contain them both.
 *
 * SystemTap doesn't cache full path, so we have to use function →
 task_dentry_path(),
 * to get entire path in this manner:
 * dentry = @cast(file, "file")->f_path->dentry;
 * vfsmnt = @cast(file, "file")->f_path->mnt;
 * return task_dentry_path(task, dentry, vfsmnt);
 *
 * Unfortunately, SystemTap has bug 16991, fixed in 2.6, so
 * we limit output to a basename
 */
function file_path:string(task:long, file:long) {
 if(@defined(@cast(file, "file")->f_vfsmnt))
 return d_name(@cast(file, "file")->f_dentry);
 return d_name(@cast(file, "file")->f_path->dentry);
}
function task_root_path:string(task:long, fs_ptr:long) {
 if(@defined(@cast(fs_ptr, "fs_struct")->rootmnt))
 return d_name(@cast(fs_ptr, "fs_struct")->root);
 return d_name(@cast(fs_ptr, "fs_struct")->root->dentry);
}
function task_pwd_path:string(task:long, fs_ptr:long) {
 if(@defined(@cast(fs_ptr, "fs_struct")->pwdmnt))
 return d_name(@cast(fs_ptr, "fs_struct")->pwd);
 return d_name(@cast(fs_ptr, "fs_struct")->pwd->dentry);
}

/**
 * Prints exectuable file name from `mm->exe_file` */
function task_exefile(task:long, mm_ptr:long) {
 if(mm_ptr) {
 printf("\texe: %s\n",
 file_path(task, @cast(mm_ptr, "mm_struct")->exe_file));
 }
}

/**
 * Prints root and current dir of a task */
function task_paths(task:long, fs_ptr:long) {
 if(fs_ptr) {
 printf("\troot: %s\n", task_root_path(task, fs_ptr));
 printf("\tcwd: %s\n", task_pwd_path(task, fs_ptr));
 }
}

/**
 * Prints arguments vector. Arguments are copied into process memory (stack)
 * and located in memory area (mm->arg_start; mm_arg_end), of the strings that
 * separated with NULL-terminators, i.e.:
 * +-----+----+-------------+----+
 * | cat | \0 | /etc/passwd | \0 |
 * +-----+----+-------------+----+
 * ^ ^
 * arg_start arg_end
 *
 * WARNING: This is only a demostration functions, use cmdline_*() functions

177Appendix A. Exercise hints and solutions

 * instead
 *
 * NOTE: functions user_string* read from current address space
 * To get arguments from other processes, use Embedded C and
 * function that look like proc_pid_cmdline
 */
function task_args(mm_ptr:long) {
 if(mm_ptr) {
 arg_start = @cast(mm_ptr, "mm_struct")->arg_start;
 arg_end = @cast(mm_ptr, "mm_struct")->arg_end;
 if (arg_start != 0 arg_end != 0)
 {
 len = arg_end - arg_start;
 nr = 0;

 /*Выбираем первый аргумент*/
 arg = user_string2(arg_start, "");
 while (len > 0)
 {
 printf("\targ%d: %s\n", nr, arg);
 arg_len = strlen(arg);
 arg_start += arg_len + 1;
 len -= arg_len + 1;
 nr++;

 arg = user_string2(arg_start, "");
 }
 }
 }
}

/**
 * Returns file descriptor using fd
 * NOTE: see pfiles.stp
 */
function task_fd_filp:long(files:long, fd:long) {
 return @cast(files, "files_struct")->fdt->fd[fd];
}

function task_fds(task:long) {
 task_files = @cast(task, "task_struct", "kernel")->files;

 if(task_files) {
 max_fds = task_max_file_handles(task);

 for (fd = 0; fd start_time)) {
 start_time_sec = @cast(task, "task_struct", "kernel")
 ->start_time->tv_sec;
 real_time_sec = @cast(task, "task_struct", "kernel")
 ->real_time->tv_sec;
 printf("\tstart time: %ds\t real start time: %ds\n", start_time_sec, →
 real_time_sec);
 }
 else {
 real_time_sec = @cast(task, "task_struct", "kernel")
 ->real_start_time->tv_sec;
 printf("\treal start time: %ds\n", real_time_sec);
 }

Appendix A. Exercise hints and solutions178

}

/**
 * Prints scheduler stats */
function task_time_stats(task:long) {
 user = @cast(task, "task_struct", "kernel")->utime;
 kernel = @cast(task, "task_struct", "kernel")->stime;
 printf("\tuser: %s\t kernel: %s\n", cputime_to_string(user), →
 cputime_to_string(kernel));
}

function dump_task(task:long) {
 task_mm = @cast(task, "task_struct", "kernel")->mm;
 task_fs = @cast(task, "task_struct", "kernel")->fs;

 printf("Task %p is %d@%d %s\n", task, task_pid(task), task_cpu(task), →
 task_execname(task));

 task_exefile(task, task_mm);
 task_paths(task, task_fs);
 task_args(task_mm);
 task_fds(task);
 task_start_time_x(task);
 task_time_stats(task);
}

probe kprocess.exec_complete, kprocess.exit {
 dump_task(task_current());
}

Script file scripts/dtrace/dumptask-lab3.d

#!/usr/sbin/dtrace -qCs

/**
 * dumptask.d
 *
 * Prints information about current task once per second
 * Contains macros to extract data from `kthread_t` and its siblings
 * Some parts use standard translators `psinfo_t` and `lwpsinfo_t*`
 *
 * Tested on Solaris 11.2
 */

int argnum;
void* argvec;
string pargs[int];

int fdnum;
uf_entry_t* fdlist;

#define PSINFO(thread) xlate(thread->t_procp)
#define LWPSINFO(thread) xlate(thread)

#define PUSER(thread) thread->t_procp->p_user

/**

179Appendix A. Exercise hints and solutions

 * Extract pointer depending on data model: 8 byte for 64-bit
 * programs and 4 bytes for 32-bit programs.
 */
#define DATAMODEL_ILP32 0x00100000
#define GETPTR(proc, array, idx) \
 ((uintptr_t) ((proc->p_model == DATAMODEL_ILP32) \
 ? ((uint32_t*) array)[idx] : ((uint64_t*) array)[idx]))
#define GETPTRSIZE(proc) \
 ((proc->p_model == DATAMODEL_ILP32)? 4 : 8)

#define FILE(list, num) list[num].uf_file
#define CLOCK_TO_MS(clk) (clk) * (`nsec_per_tick / 1000000)

/* Helper to extract vnode path in safe manner */
#define VPATH(vn) \
 ((vn) == NULL || (vn)->v_path == NULL) \
 ? "unknown" : stringof((vn)->v_path)

/* Prints process root - can be not `/` for zones */
#define DUMP_TASK_ROOT(thread) \
 printf("\troot: %s\n", \
 PUSER(thread).u_rdir == NULL \
 ? "/" \
 : VPATH(PUSER(thread).u_rdir));

/* Prints current working directory of a process */
#define DUMP_TASK_CWD(thread) \
 printf("\tcwd: %s\n", \
 VPATH(PUSER(thread).u_cdir));

/* Prints executable file of a process */
#define DUMP_TASK_EXEFILE(thread) \
 printf("\texe: %s\n", \
 VPATH(thread->t_procp->p_exec));

/* Copy up to 9 process arguments. We use `psinfo_t` tapset to get
 number of arguments, and copy pointers to them into `argvec` array,
 and strings into `pargs` array.

 See also kernel function `exec_args()` */
#define COPYARG(t, n) \
 pargs[n] = (n t_procp, argvec, n)) : "???"
#define DUMP_TASK_ARGS_START(thread) \
 printf("\tpsargs: %s\n", PSINFO(thread)->pr_psargs); \
 argnum = PSINFO(thread)->pr_argc; \
 argvec = (PSINFO(thread)->pr_argv != 0) ? \
 copyin(PSINFO(thread)->pr_argv, \
 argnum * GETPTRSIZE(thread->t_procp)) : 0;\
 COPYARG(thread, 0); COPYARG(thread, 1); COPYARG(thread, 2); \
 COPYARG(thread, 3); COPYARG(thread, 4); COPYARG(thread, 5); \
 COPYARG(thread, 6); COPYARG(thread, 7); COPYARG(thread, 8);

/* Prints start time of process */
#define DUMP_TASK_START_TIME(thread) \
 printf("\tstart time: %ums\n", \
 (unsigned long) thread->t_procp->p_mstart / 1000000);

/* Processor time used by a process. Only for conformance
Appendix A. Exercise hints and solutions180

 with dumptask.d, it is actually set when process exits */
#define DUMP_TASK_TIME_STATS(thread) \
 printf("\tuser: %ldms\t kernel: %ldms\n", \
 CLOCK_TO_MS(thread->t_procp->p_utime), \
 CLOCK_TO_MS(thread->t_procp->p_stime));

#define DUMP_TASK_FDS_START(thread) \
 fdlist = PUSER(thread).u_finfo.fi_list; \
 fdcnt = 0; \
 fdnum = PUSER(thread).u_finfo.fi_nfiles;

#define DUMP_TASK(thread) \
 printf("Task %p is %d/%d@%d %s\n", thread, \
 PSINFO(thread)->pr_pid, \
 LWPSINFO(thread)->pr_lwpid, \
 LWPSINFO(thread)->pr_onpro, \
 PUSER(thread).u_comm); \
 DUMP_TASK_EXEFILE(thread) \
 DUMP_TASK_ROOT(thread) \
 DUMP_TASK_CWD(thread) \
 DUMP_TASK_ARGS_START(thread) \
 DUMP_TASK_FDS_START(thread) \
 DUMP_TASK_START_TIME(thread) \
 DUMP_TASK_TIME_STATS(thread)

#define _DUMP_ARG_PROBE(probe, argi) \
probe /argi f_vnode)); }
#define DUMP_FILE_PROBE(probe) \
 _DUMP_FILE_PROBE(probe, 0) _DUMP_FILE_PROBE(probe, 1) \
 _DUMP_FILE_PROBE(probe, 2) _DUMP_FILE_PROBE(probe, 3) \
 _DUMP_FILE_PROBE(probe, 4) _DUMP_FILE_PROBE(probe, 5) \
 _DUMP_FILE_PROBE(probe, 6) _DUMP_FILE_PROBE(probe, 7)

BEGIN {
 proc = 0;
 argnum = 0;
 fdnum = 0;
}

proc:::exec-*, proc:::exit {
 DUMP_TASK(curthread);
}

DUMP_ARG_PROBE(proc:::exec-*) DUMP_ARG_PROBE(proc:::exit)
DUMP_FILE_PROBE(proc:::exec-*) DUMP_FILE_PROBE(proc:::exit)

Part 2

First of all we have to create several associative arrays which will use PID as a key (we
can't use thread-local variables here because exit() can be called from any of process
threads), and timestamp as a value. Final data will be kept in aggregations which we already
learned in exercise 2.

181Appendix A. Exercise hints and solutions

We will use probes from the section Lifetime of a process. They are shown in the following
picture:

However, we do not know PID at the time fork() is called so we will use thread-local
variable for that. We can check return value of fork() in return probe and re-use timestamp
saved previously if everything went fine and fork() has returned value greater than 1 or
throw it away.

We wrote an ugly function task_args() to collect process arguments in dumptask.stp
script. This data is available since SystemTap 2.5: kprocess.exec probe provides program's
arguments in argstr argument. We will use curpsinfo->pr_psargs on Solaris as it keeps
first 80 characters of command line to get rid of copying userspace arguments too. We will
use timestamp variable in DTrace as a source of timestamps (again, a tautology). We will
use local_clock_us() function as we do not care about CPU time skew.

Finally, to reduce memory footprint in SystemTap, we will reduce associative arrays sizes.
Here are resulting scripts:

Script file scripts/stap/forktime.stp

global tm_fork_start_par[128], tm_fork_start[128], tm_fork_end[128],
 tm_exec_start[128], tm_exec_end[128], p_argstr[128];
global fork[128], postfork[128], exec[128], proc[128];

probe syscall.fork {
 tm_fork_start_par[tid()] = local_clock_us();
}
probe syscall.fork.return {
 if($return > 1) {
 tm_fork_start[$return] = tm_fork_start_par[tid()];
 delete tm_fork_start_par[tid()];
 }
}
probe kprocess.start {
 tm_fork_end[pid()] = local_clock_us();
}

Appendix A. Exercise hints and solutions182

fork()

exit()

exec()

wait()

SIGCHLD

kprocess.exec
proc:::exec

scheduler.process_fork
kprocess.create
proc:::create

kprocess.start
proc:::start

kprocess.exec_complete
proc:::exec-success
proc:::exec-failure

scheduler.process_free
kprocess.release

scheduler.process_exit
kprocess.exit
proc:::exit

probe kprocess.exec {
 p_argstr[pid()] = argstr;
 tm_exec_start[pid()] = local_clock_us();
}
probe kprocess.exec_complete {
 tm_exec_end[pid()] = local_clock_us();
}
probe kprocess.exit {
 argstr = p_argstr[pid()];

 fork[execname(), argstr]

Script file scripts/dtrace/forktime.d

uint64_t tm_fork_start[int];
uint64_t tm_fork_end[int];
uint64_t tm_exec_start[int];
uint64_t tm_exec_end[int];

syscall::*fork*:entry {
 self->tm_fork_start = timestamp;
}
syscall::*fork*:return
/arg1 > 0/
{
 tm_fork_start[arg1] = self->tm_fork_start;
}

proc:::start {
 tm_fork_end[pid] = timestamp;
}
proc:::exec {
 tm_exec_start[pid] = timestamp;
}
proc:::exec-* {
 tm_exec_end[pid] = timestamp;
}

proc:::exit
/ tm_fork_start[pid] > 0 tm_fork_end[pid] > 0
 tm_exec_start[pid] > 0 tm_exec_end[pid] > 0 /
{
 @fork[curpsinfo->pr_fname, curpsinfo->pr_psargs] =
 avg(tm_fork_end[pid] - tm_fork_start[pid]);
 @postfork[curpsinfo->pr_fname, curpsinfo->pr_psargs] =
 avg(tm_exec_start[pid] - tm_fork_end[pid]);
 @exec[curpsinfo->pr_fname, curpsinfo->pr_psargs] =
 avg(tm_exec_end[pid] - tm_exec_start[pid]);
 @proc[curpsinfo->pr_fname, curpsinfo->pr_psargs] =
 avg(timestamp - tm_exec_end[pid]);

 tm_fork_start[pid] = 0; tm_fork_end[pid] = 0;
 tm_exec_start[pid] = 0; tm_exec_end[pid] = 0;
}

tick-1s {
 normalize(@fork, 1000); normalize(@postfork, 1000);
 normalize(@exec, 1000); normalize(@proc, 1000);

183Appendix A. Exercise hints and solutions

 printf("%32s %8s %8s %8s %8s\n",
 "COMMAND", "FORK", "POSTFORK", "EXEC", "PROC");
 printa("%10s %22s %@6dus %@6dus %@6dus %@6dus\n",
 @fork, @exec, @postfork, @proc);

 clear(@fork); clear(@postfork); clear(@exec); clear(@proc);
}

Exercise 4

Part 1

If you ever traced system calls with strace in Linux or truss in Solaris, you'll probably
noticed that dynamic linker ld.so maps shared objects into memory before program is
actually run:
strace /bin/ls
...
open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\0\34\2\0\0\0\0\0"..., →
 832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=2107600, ...}) = 0
mmap(NULL, 3932736, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = →
 0x7f28fc500000
mprotect(0x7f28fc6b6000, 2097152, PROT_NONE) = 0
mmap(0x7f28fc8b6000, 24576, PROT_READ|PROT_WRITE, →
 MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1b6000) = 0x7f28fc8b6000
mmap(0x7f28fc8bc000, 16960, PROT_READ|PROT_WRITE, →
 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7f28fc8bc000
close(3)

Note that Linux uselib call may also being used for that.

Even if pages are already loaded into page cache, they might be mapped with different
addresses or with different permissions (which is less likely for shared objects), so operating
system need to create new memory segments for them. It also performs it lazily and only
maps limited amount of pages. The rest are mapped on demand when minor fault occur. That
is why they occur often when new processes are spawned.

We will use @count aggregation and vm.pagefault probe to count pagefaults in
SystemTap for Linux. Path to file is represented by dentry structure
$vma->vm_file->f_path->dentry –- we will use d_name function to access string
representation of its name.

Script file scripts/stap/pfstat.stp

#!/usr/bin/stap

global pfs;

probe vm.pagefault {
 vm_file = "???";
 if($vma->vm_file != 0)
 vm_file = d_name($vma->vm_file->f_path->dentry);

 pfs[vm_file]
Appendix A. Exercise hints and solutions184

Speaking of Solaris, we will need to intercept as_segat() calls. Segments that are related
to files are handled by segvn segment driver, so we have to compare pointer to operations
table to determine if segment is corresponding to that driver.

Script file scripts/dtrace/pfstat.d

#!/usr/sbin/dtrace -qCs

#define VNODE_NAME(vp) \
 (vp) ? ((vp)->v_path) \
 ? stringof((vp)->v_path) : "???" : "[anon]"

#define IS_SEG_VN(s) (((struct seg*) s)->s_ops == `segvn_ops)

fbt::as_fault:entry {
 self->in_fault = 1;
}
fbt::as_fault:return {
 self->in_fault = 0;
}

fbt::as_segat:return
/self->in_fault arg1 == 0/ {
 @faults["???"] = count();
}

fbt::as_segat:return
/self->in_fault arg1 != 0 IS_SEG_VN(arg1)/ {
 this->seg = (struct seg*) arg1;
 this->seg_vn = (segvn_data_t*) this->seg->s_data;

 @faults[VNODE_NAME(this->seg_vn->vp)] = count();
}

tick-1s {
 printf("%8s %s\n", "FAULTS", "VNODE");
 printa("%@8u %s\n", @faults);
 trunc(@faults);
}

When you run these scripts, you may see that most of faults are corresponding to libc
library.

Part 2

As you can see from exercise text, you'll need to get allocator cache names, but they are not
described in documentation to SLAB probes. To find them we will need to dive into Solaris
and Linux kernel source. We seek for a name (which would be represented as a string), so we
have to find allocator cache structure and fields of type char[] or char* in it.

Let's check prototype of kmem_cache_alloc() function which is mentioned in probe
description. First argument of it is a cache structure which we seek for. As you can see from
source, it is called kmem_cache_t:
void *
kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
 (from usr/src/uts/common/os/kmem.c)

185Appendix A. Exercise hints and solutions

This type is a typedefed alias for a struct kmem_cache which is defined in
usr/src/uts/common/sys/kmem_impl.h. When you check its definition, you may find
cache_name field –- it is obvious that this field contains name of cache.
struct kmem_cache {
 [...]
 char cache_name[KMEM_CACHE_NAMELEN + 1];
 [...]

Of course that is not the only way to find that field. If you know how to check cache
statistics statically, you should know that is is done with ::kmastat command in mdb
debugger. Looking at its source will reveal kmastat_cache() helper which prints statistics
for a cache. Looking at its source may reveal accesses to cache_name field:
mdb_printf((dfp++)->fmt, cp->cache_name);
 (from usr/src/cmd/mdb/common/modules/genunix/genunix.c).

Considering our findings, we may define CACHE_NAME macro and use it in a DTrace script:

Script file scripts/dtrace/kmemstat.d

#!/usr/sbin/dtrace -qCs

#define CACHE_NAME(arg) ((kmem_cache_t*) arg)->cache_name

fbt::kmem_cache_alloc:entry {
 @allocs[CACHE_NAME(arg0)] = count();
}

fbt::kmem_cache_free:entry {
 @frees[CACHE_NAME(arg0)] = count();
}

tick-1s {
 printf("%8s %8s %s\n", "ALLOCS", "FREES", "SLAB");
 printa("%@8u %@8u %s\n", @allocs, @frees);

 trunc(@allocs); trunc(@frees);
}

Seeking for a cache name in Linux is not that straightforward. First of all, we deal not with
function boundary probes for SLAB caches, but with tapset aliases which do not provide
pointers to a cache structures. Moreover, Linux has three implementations for kernel memory
allocators: original SLAB, its improved version SLUB and a SLOB, compact allocator for
embedded systems. SLOB is not generally used, so we will omit it.

vm.kmem_cache_alloc probe is defined in a vm tapset, so we will need to look into tapset
directory /usr/share/systemtap/tapset/linux/ to find its definition. As you can see
from it, it refers either tracepoint kmem_cache_alloc or kmem_cache_alloc() kernel
function. Here are source code of it:
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
 void *ret = slab_alloc(cachep, flags, _RET_IP_);

 trace_kmem_cache_alloc(_RET_IP_, ret,
 cachep->object_size, cachep->size, flags);

 return ret;
}

Appendix A. Exercise hints and solutions186

 (from mm/slab.c)

Note the trace_kmem_cache_alloc call which is actually represents invocation of the
FTrace tracepoint. The same function is defined in SLUB allocator, but it uses s as a name
of first functions argument, so we will have to use @choose_defined construct. Both
allocators use same name for cache's structure: struct kmem_cache. The name is defined in
that structure in files include/linux/slab_def.h and include/linux/slub_def.h:
struct kmem_cache {
 [...]
 const char *name;
 [...]

Like in Solaris, Linux shows cache statistics in /proc/slabinfo file. Diving into Kernel
sources will reveal that cache_name functions is used to get cache's name and it accesses
name field.

Considering all this, here are an implementation of SystemTap script:

Script file scripts/stap/kmemstat.stp

#!/usr/bin/stap

global allocs, frees;

probe kernel.function("kmem_cache_alloc"),
 kernel.function("kmem_cache_alloc_node") {
 cache = @choose_defined($s, $cachep);
 name = kernel_string(@cast(cache, "struct kmem_cache")->name);

 allocs[name] name);

 frees[name]

Exercise 5
We will need to access pointer to block_device pointer in Linux to collect block device

name and group data by it. As we know, main filesystem structure is called super_block
which contains s_bdev pointer which has struct block_device*. SystemTap has two
tapset functions, MINOR() and MAJOR() which allow to extract device number from bd_dev
field of that structure. There is also an undocumented bdevname() function which is more
convenient as it returns string, so we will use it.

We will attach probes to vfs_write() and vfs_read() functions to trace filesystem
operations. First argument of that functions is pointer to file of type struct file*. Amount
of data being written or read is passed through argument $count.

BIO level can be traced with ioblock tapset. We will do so by using its
ioblock.request probe. It has following arguments: bdev –- block_device pointer, size
–- amount of data in request, rw –- read or write flag which can be tested for equality with
BIO_READ or BIO_WRITE constants.

Here is resulting deblock.stp script:

Script file scripts/stap/deblock.stp

global vfstp, biotp;

probe kernel.function("vfs_write") {

187Appendix A. Exercise hints and solutions

 file = $file;
 if(!file) next;

 sb = @cast(file, "file")->f_path->mnt->mnt_sb;
 if(!sb) next;

 bdev = @cast(sb, "super_block")->s_bdev;
 if(bdev)
 vfstp[bdev]

To trace readahead from part 2 we will need to replace vfs_write to vfs_read,
BIO_WRITE to BIO_READ and get rid from amount of data in request saving into aggregation
by replacing it with number of requests (which will be constant 1).

We can use scsi.ioentry probe to trace SCSI operations. We can actually detect which
command was used by parsing CDB buffer, but we will omit that and will trace all SCSI
operations. Getting device name, however is not that easy: request structure which is used
in SCSI stack refers to gendisk and hd_struct structures, but they won't refer to
block_device (on contrary, block_device itself refers them). So we will make a small
trick: there is a linked list of structures bio ... biotail which refer block device structure
the same way they do in BIO probes, so we will simply copy approach from
ioblock.request probe.

We will get readahead.stp script after applying all these modifications:

Script file scripts/stap/readahead.stp

global vfsops, bioops, scsiops;

probe kernel.function("vfs_read") {
 file = $file;
 if(!file) next;

 sb = @cast(file, "file")->f_path->mnt->mnt_sb;
 if(!sb) next;

 bdev = @cast(sb, "super_block")->s_bdev;
 if(bdev)
 vfsops[bdev] bio;
 if(!bio) next;

 bdev = @cast(bio, "bio")->bi_bdev;
 if(bdev)
 scsiops[bdev]

One can get device name with ddi_pathname() action or devinfo_t translator (which
uses it indirectly) which is applied to buf structure. Probes from io provider will do it
automatically by passing resulting pseudo-structure as args[1] argument. Aside from name,
it contains minor and major device names.

Getting device name on VFS layer, however is harder: vfs_t structure which describes
filesystem has only device number vfs_dev. ZFS makes things even harder: there is
intermediate layer called pool which hides block devices from filesystem layer. So we will
use mountpoints as an aggregation key. We will trace filesystem operations by attaching to
fop_read() and fop_write() which accept pointers to vnode_t of file as their first
argument and pointer to uio structure as their second argument (it describes user request and
thus contains amount of data).

Appendix A. Exercise hints and solutions188

Using all this we can get our deblock.d script:

Script file scripts/dtrace/deblock.d

#!/usr/sbin/dtrace -qCs

#define VFSMNTPT(vfs) ((vfs)->vfs_vnodecovered \
 ? stringof((vfs)->vfs_vnodecovered->v_path) \
 : "???")
#define NBITSMINOR 32
#define MAXMIN 0xFFFFFFFF

fbt::fop_write:entry
/args[1]->uio_resid != 0/ {
 this->dev = args[0]->v_vfsp->vfs_dev;
 @vfs[getmajor(this->dev),
 getminor(this->dev),
 VFSMNTPT(args[0]->v_vfsp)] = sum(args[1]->uio_resid);
}

io:::start
/args[0]->b_bcount != 0 args[0]->b_flags B_WRITE/ {
 @bio[args[1]->dev_major,
 args[1]->dev_minor,
 args[1]->dev_statname] = sum(args[0]->b_bcount);
}

tick-1s {
 normalize(@vfs, 1024); normalize(@bio, 1024);

 printf("%9s %16s %8s BDEV KB/s\n", "DEV_T", "NAME", "VFS KB/s");
 printa("%3d,%-5d %16s %8@u %@u\n", @vfs, @bio);

 trunc(@vfs); trunc(@bio);
}

We will trace SCSI stack by attaching to scsi-transport-dispatch probe which will
receive pointer to buf as first argument. That is very similar to probes from io provider
except that probe doesn't apply translators on buffer.

Other changes in readahead.d are similar to those that was done for SystemTap:

Script file scripts/dtrace/readahead.d

#!/usr/sbin/dtrace -qCs

#define VFSMNTPT(vfs) ((vfs)->vfs_vnodecovered \
 ? stringof((vfs)->vfs_vnodecovered->v_path) \
 : "???")
#define HASDI(bp) (((struct buf*) bp)->b_dip != 0)
#define DEVINFO(bp) xlate((struct buf*) bp)

fbt::fop_read:entry
/args[1]->uio_resid != 0/ {
 this->dev = args[0]->v_vfsp->vfs_dev;
 @vfs[getmajor(this->dev),
 getminor(this->dev),
 VFSMNTPT(args[0]->v_vfsp)] = count();
}

189Appendix A. Exercise hints and solutions

io:::start
/args[0]->b_bcount != 0 args[0]->b_flags B_READ/ {
 @bio[args[1]->dev_major,
 args[1]->dev_minor,
 args[1]->dev_statname] = count();
}

scsi-transport-dispatch
/arg0 != 0 HASDI(arg0)/ {
 @scsi[DEVINFO(arg0)->dev_major,
 DEVINFO(arg0)->dev_minor,
 DEVINFO(arg0)->dev_statname] = count();
}

tick-1s {
 printf("%9s %16s %8s %8s SCSI OP/s\n", "DEV_T", "NAME", "VFS OP/s", "BDEV →
 OP/s");
 printa("%3d,%-5d %16s %8@u %@8u %@u\n", @vfs, @bio, @scsi);

 trunc(@vfs); trunc(@bio); trunc(@scsi);
}

Exercise 6
This exercise is not so different than any latency measurement script where latency is

measured as difference between timestamps of two probe firings and saved to an aggregation.

Note that plockstat$ provider doesn't serve a probe for mutex lock attempt, so we had to
expand it by using pid$ provider. As you may notice from ustack outputs in pthread.d
example, mutex lock attempts are implemented by mutex_lock_impl() libc function. We
will use quantize() aggregation which will be printed with printa:

Script file scripts/dtrace/mtxtime.d

pid$target::mutex_lock_impl:entry
{
 self->mtxtime = timestamp;
}

plockstat$target:::mutex-acquire
/ self->mtxtime != 0 /
{
 @[ustack()] = quantize(timestamp - self->mtxtime);
 self->mtxtime = 0;
}

pid$target::experiment_unconfigure:entry
{
 printa(@);
}

You will need to bind this script to tsexperiment process using -c or -p option.

We will need to use static probes mutex_entry and mutex_acquired for a SystemTap
version of that script. However, we will need to be careful while working with userspace
backtraces. First of all, we should use -d option to provide path to SystemTap for resolving

Appendix A. Exercise hints and solutions190

symbols or --ldd to make it scan library dependencies of traced binary and automatically
add them (when some of them are missing, stap utility will provide a hint with full paths).

Mutexes are also often used in TSLoad which can cause excessive overheads when we try
to trace them, especially when we will use ubacktrace() function. You can use
STP_NO_OVERLOAD macro definition (which can be passed to stap with -D option) to
prevent stap from failing when overheads are big, or you can reduce overheads. In our case
we will limit amount of traced callers by using ucallers() function which accepts depth of
backtrace as a first argument like ustack() function from backtrace and only collects
addresses without resolving them to symbols. We will defer symbol resolving to an
aggregation printing.

Here are our script for SystemTap:

Script file scripts/stap/mtxtime.stp

global mtxtime[128], mtxlockt;

@define libpthread %("/lib64/libpthread.so.0" %)
@define tsexperiment %("/opt/tsload/bin/tsexperiment" %)

probe process(@libpthread).mark("mutex_entry") {
 if(pid() != target()) next;

 mtxtime[tid()] = local_clock_ns();
}

probe process(@libpthread).mark("mutex_acquired") {
 if(pid() != target()) next;

 tm = mtxtime[tid()];
 if(tm == 0) next;

 mtxlockt[ucallers(6)]

Exercise 7
Nature of solution of this exercise depends on your Apache and PHP configuration. In our

case (as described in lab description), PHP was built as Apache HTTPD module (by using
--with-apxs2 option of configure-script), so all PHP code will be executed in a context of
Apache worker, so we can safely use Thread-Local variables. If PHP was deployed with
PHP-FPM, things would be more complicated.

So we will need to use process-request-entry probe to get URI of request and pair of
probes function-entry/function-entry to measure execution time of a function. Since
name of a method is passed in multiple probe arguments, we will have to use string
concatenation. Like in many other exercises, we will use aggregations to collect statistics.
Note that you can use PHP probe request-startup instead of process-request-entry.

As you could remember from a profiling section of tracing principles, generally you
shouldn't measure execution time of a function by tracing entry and exit points of it.
However, PHP is an interpreted language, so it has lesser relative overheads of tracing
because execution of its opcodes is slower than for the real processor (unless you are using
some precompiler to machine language like HHVM) and we can afford full-tracing of it.

Here are resulting implementations of scripts for SystemTap and DTrace:

191Appendix A. Exercise hints and solutions

Script file scripts/stap/topphp.stp

@define httpd %("/usr/local/apache2/bin/httpd" %)
@define libphp5 %("/usr/local/apache2/modules/libphp5.so" %)

global rquri, starttime, functime;

probe process(@httpd).mark("process__request__entry") {
 rquri[tid()] = user_string($arg2);
}

probe process(@libphp5).mark("function__entry") {
 starttime[tid()] = gettimeofday_ns();
}

probe process(@libphp5).mark("function__return") {
 if(starttime[tid()] == 0) next;

 func = user_string($arg4) . user_string($arg5) . user_string($arg1);
 functime[func, rquri[tid()]]

Script file scripts/dtrace/topphp.d

ap*:::process-request-entry {
 self->uri = copyinstr(arg1);
}

php*:::function-entry {
 self->starttime = timestamp;
}

php*:::function-return
/ self->starttime != 0 / {
 this->func = strjoin(copyinstr(arg3),
 strjoin(copyinstr(arg4), copyinstr(arg0)));
 @[this->func, self->uri] = avg(timestamp - self->starttime);
}

END {
 printa(@);
}

Appendix A. Exercise hints and solutions192

Appendix B. Lab setup

Setting up Operating Systems
Originally we used Virtual Machines for Oracle VirtualBox with Solaris 11.0 and CentOS

6.4. Unfortunately, these versions become stale, while VirtualBox is a second-level
hypervisor which complicates performance analysis experiments.

Actual version of this book was modified to support Solaris 11.2 and CentOS 7.0. They
were installed in a Xen 4.4 environment in HVM machines. I assume that you were installed
these operating systems and already performed basic setup like setting IP address or root
password.

Setting up CentOS 7

• You will need debuginfo packages to access debug information. They are located in
separate CentOS repository which you will need to turn on:
sed -i 's/^enabled=0/enabled=1/g' /etc/yum.repos.d/CentOS-Debuginfo.repo

Warning

CentOS 7.0 contains incorrect GPG key for debuginfo repository like described in bug 7516, so you will also
need to update centos-release package:

yum install centos-release

• Install SystemTap
yum install systemtap systemtap-sdt-devel systemtap-client

• Run stap-prep script. That script will install packages that are needed for building
kernel modules and debuginfo packages:
stap-prep

Note

kernel-debuginfo may be installed manually using YUM package manager. In that case, however, you should
add precise version of kernel to a package name. Otherwise YUM will install newest version that probably
wouldn't match kernel you running.

• Install debuginfo-install utility:
yum install yum-utils

193Appendix B. Lab setup

https://bugs.centos.org/view.php?id=7516

• Install debug information for userspace programs:
debuginfo-install cat python

• Change /tmp mount point to tmpfs. To do that, add following line to /etc/fstab file:
tmpfs /tmp tmpfs defaults 0 0

• After that clean up /tmp and run mount -a command.
• Building TSLoad workload generator and its modules

• Install SCons
yum install wget
cd /tmp
wget 'http://prdownloads.sourceforge.net/scons/scons-2.3.4-1.noarch.rpm'
rpm -i scons-2.3.4-1.noarch.rpm

• Install development files:
yum install libuuid-devel libcurl-devel

• Build a workload generator:
git clone https://github.com/myaut/tsload
cd tsload/agent
scons --prefix=/opt/tsload install

• Build loadable modules:
git clone https://bitbucket.org/sergey_klyaus/dtrace-stap-book.git
cd dtrace-stap-book/tsload
scons --with-tsload=/opt/tsload/share/tsload/devel install

• Install OpenJDK7:
yum install java-1.7.0-openjdk-devel.x86_64

Setting up Solaris 11.2

• Building TSLoad workload generator and its modules
• Install SCons

wget 'http://prdownloads.sourceforge.net/scons/scons-2.3.4.tar.gz'
tar xzvf scons-2.3.4.tar.gz
cd scons-2.3.4/
python setup.py install

• Install development files:
pkg install pkg:/developer/gcc-45
pkg install pkg:/developer/build/onbld

• Build a workload generator:
git clone https://github.com/myaut/tsload
cd tsload/agent
scons --prefix=/opt/tsload install

• Build loadable modules:
git clone https://bitbucket.org/sergey_klyaus/dtrace-stap-book.git
cd dtrace-stap-book/tsload
scons --with-tsload=/opt/tsload/share/tsload/devel install

• Install JDK7:
pkg install --accept pkg:/developer/java/jdk-7

Appendix B. Lab setup194

iSCSI
We will need to use SCSI device so we can fully trace it in exercise 5. Xen hypervisor

supports SCSI emulation, but only by emulating outdated LSI 53c895a controller which is
not supported by Solaris. However, we can create iSCSI devices in Dom0 and supply them to
virtual machines. The following guide is created for Debian 7 which uses iSCSI Enterprise
Target. Recent Linux kernels replaced it with LIO stack.

• Install IET packages:
aptitude install iscsitarget iscsitarget-dkms

• Create logical disks for virtual machines. They would be LVM volumes
/dev/mapper/vgmain-sol11--base--lab and
/dev/mapper/vgmain-centos7--base--lab in our example.

• Create targets in /etc/iet/ietd.conf file by adding following lines:
Target iqn.2154-04.tdc.r520:storage.lab5-sol11-base
 Lun 0 Path=/dev/mapper/vgmain-sol11--base--lab,Type=blockio

Target iqn.2154-04.tdc.r520:storage.lab5-centos7-base
 Lun 0 Path=/dev/mapper/vgmain-centos7--base--lab,Type=blockio

• Note that target names should match DNS name of a host which provides them.
• Configure /etc/iet/initiators.allow file to forbid Solaris access to disk allocated

for CentOS machine and vice versa. Delete or comment out ALL ALL line and add lines with
target names and IP addresses of corresponding machines:
iqn.2154-04.tdc.r520:storage.lab5-sol11-base 192.168.50.179
iqn.2154-04.tdc.r520:storage.lab5-centos7-base 192.168.50.171

• Restart IET daemon:
/etc/init.d/iscsitarget restart

• Configure Solaris initiator. 192.168.50.116 is an IP address of our Dom0 system which
provides iSCSI targets.
iscsiadm add discovery-address 192.168.50.116
iscsiadm modify discovery -t enable
svcadm restart svc:/network/iscsi/initiator:default

• Similarly configure CentOS initiator:
yum install iscsi-initiator-utils
systemctl enable iscsid
systemctl start iscsid
iscsiadm -m discovery -t sendtargets -p 192.168.50.116
iscsiadm -m node --login

Web application stack
We will need to setup web stack to complete exercise 7. We will use following applications:

web server Apache HTTPD 2.4, relational database MySQL Community Edition 5.6 and PHP
interpreter PHP 5.6, and content management system Drupal 7 on top of them. This guide
can be used to setup both CentOS 7 and Solaris 11 except for few commands (they will be
marked). We will need to build these programs from source codes to enable USDT probes in
them.

195Appendix B. Lab setup

DANGER!

This guide is intended for lab setup. It could lack security, so do not use it for production systems.

Download programs sources

• Download sources with wget:
wget http://us3.php.net/distributions/php-5.6.10.tar.bz2
wget http://cdn.mysql.com/Downloads/MySQL-5.6/mysql-5.6.25.tar.gz
wget http://archive.apache.org/dist/httpd/httpd-2.4.9.tar.gz
wget http://archive.apache.org/dist/httpd/httpd-2.4.9-deps.tar.gz

• We will also need patch for Apache HTTPD build system:
wget -O dtrace.patch https://bz.apache.org/bugzilla/attachment.cgi?id=31665

• (Only CentOS7) Remove programs that were installed from package repositories and
install some dependencies:
yum erase php mysql mysql-server httpd
yum install libxml2-devel bzip2

• (Only Solaris) We will have to use GNU Make for all builds, so make an alias to
maintain guide uniformity:
alias make=gmake

• Unpack downloaded archives
tar xzvf httpd-2.4.9.tar.gz
tar xzvf mysql-5.6.25.tar.gz
tar xjvf php-5.6.10.tar.bz2
tar xzvf httpd-2.4.9-deps.tar.gz

Build and install MySQL from sources

• Change current directory to one with sources:
cd mysql-5.6.25

• (Only CentOS7) Install dependencies:
yum install cmake bison ncurses-devel gcc-c++

• (Only Solaris) Install dependencies:
pkg install pkg:/developer/build/cmake
pkg install pkg:/developer/parser/bison

• Build and install MySQL (it would be installed into /usr/local/mysql)
cmake --enable-dtrace .
make -j4
make install

Build and install Apache HTTPD from sources

• Change current directory to one with sources:
cd ../httpd-2.4.9

• (Only CentOS7) Install dependencies:
yum install pcre-devel autoconf flex patch

• (Only Solaris) Install dependencies:

Appendix B. Lab setup196

pkg install pkg:/developer/build/autoconf
pkg install pkg:/developer/macro/gnu-m4
pkg install pkg:/developer/lexer/flex

• Apply patch to a build system and recreate configure script:
patch -p0

• Create file for building MPM:
(cd server/mpm/event/
 echo "$(pwd)/event.o $(pwd)/fdqueue.o" > libevent.objects)

• Fix server/Makefile.in file:
sed -i 's/apache_probes.h/"apache_.*probes.h"/' server/Makefile.in

• Build and install Apache HTTPD (it would be installed into /usr/local/apache2):
./configure --with-included-apr --enable-dtrace
make -j4
make install

Build and install PHP interpreter from sources

• Change current directory to one with sources:
cd php-5.6.10

• (Only CentOS7) Install dependencies:
yum install libjpeg-turbo-devel libpng12-devel

• (Only Solaris) Install dependencies:
pkg install pkg:/system/library/gcc-45-runtime

• Build and install PHP:
./configure --enable-debug --enable-dtrace --with-mysql \
 --with-apxs2=/usr/local/apache2/bin/apxs --without-sqlite3 \
 --without-pdo-sqlite --with-iconv-dir --with-jpeg-dir \
 --with-gd --with-pdo-mysql
make -j4
make install

Setup MySQL database

• Change directory to a MySQL root directory:
cd /usr/local/mysql

• (Only CentOS7) Create mysql user:
groupadd -g 666 mysql
useradd -u 666 -g mysql -d /usr/local/mysql/home/ -m mysql

• Create data files:
chown -R mysql:mysql data/
./scripts/mysql_install_db

• Create /etc/my.cnf configuration file:
cat > /etc/my.cnf

• Create log file and directory for PID file:
touch /var/log/mysqld.log chown mysql:mysql /var/log/mysqld.log
mkdir /var/run/mysqld/ chown mysql:mysql /var/run/mysqld/

• Fill system tables:
197Appendix B. Lab setup

chown -R mysql:mysql data/
./scripts/mysql_install_db --ldata=/usr/local/mysql/data

• Start mysqld daemon:
./support-files/mysql.server start

• Set MySQL root password to changeme:
/usr/local/mysql/bin/mysqladmin -u root password changeme

• Create drupal user in MySQL:
/usr/local/mysql/bin/mysql --user=root -p mysql -h localhost
Enter password: changeme
mysql> CREATE USER 'drupal'@'localhost' IDENTIFIED BY 'password';
mysql> GRANT ALL PRIVILEGES ON * . * TO 'drupal'@'localhost';
mysql> FLUSH PRIVILEGES;

Setup Apache and PHP interpreter

• (Only CentOS7) Disable firewall:
systemctl disable firewalld
systemctl stop firewalld

• Change directory to HTTPD root directory:
cd /usr/local/apache2

• Make a backup copy of configuration file and add PHP 5 support to it (you will have to
use gsed instead of sed in Solaris):
cp conf/httpd.conf conf/httpd.conf.orig
sed -re 's/^(\s*DirectoryIndex.*)/\1 index.php/' conf/httpd.conf.orig > →
 conf/httpd.conf
cat >> conf/httpd.conf

• Start Apache HTTPD:
./bin/httpd

Install Drupal 7

• Change to a directory with web documents:
cd /usr/local/apache2/htdocs

• Download and unpack Drupal 7:
cd /tmp
wget http://ftp.drupal.org/files/projects/drupal-7.38.zip
cd /usr/local/apache2/htdocs/
unzip /tmp/drupal-7.38.zip
mv drupal-7.38/ drupal/
chown -R daemon:daemon .

• Create drupal database:
/usr/local/mysql/bin/mysql --user=drupal -p -h localhost
Enter password: password
mysql> CREATE DATABASE drupal;

• Enter http://SERVER ADDRESS/drupal/install.php in web browser and follow
Drupal installer instructions. Use following parameters when setting up database:

• Database name: drupal
• Database username: drupal

Appendix B. Lab setup198

• Database password: password

Install Drupal module devel and setup test data

• Download and install it:
wget -O /tmp/devel-7.x-1.5.tar.gz →
 http://ftp.drupal.org/files/projects/devel-7.x-1.5.tar.gz
cd /usr/local/apache2/htdocs/drupal/modules
tar xzvf /tmp/devel-7.x-1.5.tar.gz

• Access index page of Drupal, choose Modules in top-level menu, and check Devel and
Devel generate in the shown list, then click on Save Configuration.

• After enabling modules, choose Configure for Devel generate module, and choose
Generate content in a menu, pick option Article and click Generate. 50 test pages should
appear at index page.

Note

To start services, use following commands:

/usr/local/mysql/support-files/mysql.server start
/usr/local/apache2/bin/httpd

199Appendix B. Lab setup

Appendix C. Cheatsheet

Appendix C. Cheatsheet200

Tools
DTrace SystemTap

Tool dtrace(1M) stap(1)

List probes # dtrace -l
dtrace -l -P io

stap -l 'ioblock.*'
stap -L 'ioblock.*'

One-liner # dtrace -n '
 syscall::read:entry {
 trace(arg1); } '

stap -e '
 probe syscall.read {
 println(fd); } '

Script # dtrace -s script.d

(optionally add -C for preprocessor, -q for quiet
mode)

stap script.stp

Custom probe # dtrace -P io -n start -

Integer arguments # dtrace -n '
 syscall::read:entry
 / cpu == $1 / ' 0

stap -e '
 probe syscall.read {
 if(cpu() != $1) next;
 println(fd); } ' 0

String arguments # dtrace -n '
 syscall::read:entry
 / execname == $1 / ' '"cat"'

stap -e '
 probe syscall.read {
 if(execname() == @1)
 println(fd); } ' cat

Guru/destructive mode
(!)

dtrace -w ... # stap -g ...

Redirect to file # dtrace -o FILE ...

(appends)

stap -o FILE ...

(rewrites)

Tracing process # dtrace -n '
 syscall::read:entry
 / pid == $target / { ...
 }' -c 'cat /etc/motd'

(or -p PID)

stap -e '
 probe syscall.read {
 if(pid() == target()) ...
 } ' -c 'cat /etc/motd'

(or -x PID)

Probe names
DTrace SystemTap

Begin/end dtrace:::BEGIN, dtrace:::END begin, end

foo() entry fbt::foo:entry kernel.function("foo")
module("mod").function("foo")

foo() return fbt::foo:return kernel.function("foo").return

Wildcards fbt::foo*:entry kernel.function("foo*")

Static probe mark sdt:::mark kernel.trace("mark")

System call syscall::read:entry syscall.read

Timer once per
second

tick-1s timer.s(1)

Profiling profile-997hz timer.profile(), perf.*

read() from libc pid$target:libc:read:entry
Traces process with pid == $target

process("/lib64/libc.so.6").function("read")
Traces any process that loads libc

In DTrace parts of probe name may be omitted: fbt::foo:entry -> foo:entry
Units for timer probes: ns, us, ms, s, hz, jiffies (SystemTap), m, h, d (all three - DTrace)

201Appendix C. Cheatsheet

Printing
DTrace SystemTap

Value trace(v) print(v)

Value +
newline

- println(v)

Delimited
values

- printd(",",v1,v2)
printdln(",",v1,v2)

Memory
dump

tracemem(
 ptr, 16)

printf("%16M", ptr)

Formatted printf("%s", str)

Backtrace ustack(n)
ustack()

print_ubacktrace()
print_ustack(
 ubacktrace())

Symbol usym(addr)
ufunc(addr)
uaddr(addr)

print(usymname(addr))
print(usymdata(addr))

If u prefix is specified, userspace symbols and backtraces are
printed, if not –- kernel symbols are used

String operations
Operation DTrace SystemTap_

Get from
kernel

stringof(expr)
(string) expr

kernel_string*()

Convert
scalar

sprint() and
sprintf()

Copy from
user

copyinstr() user_string*()

Compare ==, !=, >, >=, ,

Concat strjoin(str1,
str2)

str1 . str2

Get length strlen(str)

Check for
substring

strstr(
 haystack,
 needle)

isinstr(
 haystack,
 needle)

Context variables
Description DTrace SystemTap

Thread curthread task_current()

Thread ID tid tid()

PID pid pid()

Parent PID ppid ppid()

User/group ID uid/gid uid()/gid()
euid()/egid()

Executable
name

execname
curpsinfo->
ps_fname

execname()

Command line curpsinfo->
ps_psargs

cmdline_*()

CPU number cpu cpu()

Probe names probeprov
probemod
probefunc
probename

pp()
pn()
ppfunc()
probefunc()
probemod()

Time
Time
source

DTrace SystemTap

System
timer

`lbolt
`lbolt64

jiffies()

CPU cycles - get_cycles()

Monotonic
time

timestamp local_clock_unit()

cpu_clock_unit(cpu)

CPU time
of thread

vtimestamp -

Real time walltimestamp gettimeofday_unit()

Where unit is one of s, ms, us, ns

Aggregations
Time source DTrace SystemTap

Add value @aggr[keys] = func(value); aggr[keys]

Printing printa(@aggr);
printa("format string", @aggr);

foreach([keys] in aggr) {
 print(keys, @func(aggr[keys]));
}

Clear clear(@aggr); or trunc(@aggr); delete aggr;

Normalization by 1000 normalize(@aggr, 1000);
denormalize(@aggr);

@func(aggr) / 1000 in printing

Select 20 values trunc(@aggr, 20); foreach([keys] in aggr limit 20) {
 print(keys, @func(aggr[keys]));
}

Histograms (linear in
[10;100] with step 5 and
logarithmical)

@lin = lquantize(value, 10, 100, 5);
@log = quantize(value);
...
printa(@lin); printa(@log);

aggr

Where func is one of count, sum, min, max, avg, stddev

Appendix C. Cheatsheet202

Process management
SystemTap
Getting task_struct pointers:

• task_current() – current task_struct
• task_parent(t) – parent of task t
• pid2task(pid) – task_struct by pid

Working with task_struct pointers:
• task_pid(t) task_tid(t)
• task_state(t) – 0 (running), 1-2 (blocked)
• task_execname(t)

DTrace
kthread_t* curthread fields:

• t_tid, t_pri, t_start, t_pctcpu
psinfo_t* curpsinfo fields:

• pr_pid, pr_uid, pr_gid, pr_fname, pr_psargs, pr_start
lwpsinfo_t* curlwpsinfo fields:

• pr_lwpid, pr_state/pr_sname
psinfo_t* and lwpsinfo_t* are passed to some proc::: probes

Scheduler
DTrace SystemTap

1 sched:::dequeue kernel.function("dequeue_task")

2 sched:::on-cpu scheduler.cpu_on

3 sched:::off-cpu scheduler.cpu_off

4 sched:::enqueue kernel.function("enqueue_task")

5 - scheduler.migrate

6 sched:::sleep -

7 sched:::wakeup scheduler.wakeup

Virtual memory
Probes
SystemTap

• vm.brk – allocating heap
• vm.mmap – allocating anon memory
• vm.munmap – freeing anon memory

DTrace
• as_map:entry – allocating proc mem
• as_unmap:entry – freeing proc mem

Page faults
Type DTrace SystemTap

Any vminfo::as_fault vm.pagefault
vm.pagefault.return
perf.sw.page_faults

Minor perf.sw.page_faults_min

Major vminfo:::maj_fault perf.sw.page_faults_maj

CoW vminfo:::cow_fault

Protection vminfo:::prot_fault

203Appendix C. Cheatsheet

fork()

exit()

exec()

wait()

SIGCHLD

kprocess.exec
proc:::exec

scheduler.process_fork
kprocess.create
proc:::create

kprocess.start
proc:::start

kprocess.exec_complete
proc:::exec-success
proc:::exec-failure

scheduler.process_free
kprocess.release

scheduler.process_exit
kprocess.exit
proc:::exit

CPU

CPU

Run
queue

Sleep
(wait)

 queues

444

1 1 2

3

6

7

5

new process

Block Input-Output
Block request structure fields:

Field bufinfo_t
struct buf

struct bio

Flags b_flags bi_flags

R/W b_flags bi_rw

Size b_bcount bi_size

Block b_blkno
b_lblkno

bi_sector

Callback b_iodone bi_end_io

Device b_edev
b_dip

bi_bdev

* flags B_WRITE, B_READ

Network stack

Non-native languages
Function call DTrace SystemTap

Java* method-entry

• arg0 — internal JVM thread's identifier
• arg1:arg2 — class name
• arg3:arg4 — method name
• arg5:arg6 — method signature

hotspot.method_entry

• thread_id — internal JVM thread's identifier
• class — class name
• method — method name
• sig — method signature

Perl perl$target:::sub-entry

• arg0 –- subroutine name
• arg1 –- source file name
• arg2 –- line number

process("...").mark("sub__entry")

• $arg1 –- subroutine name
• $arg2 –- source file name
• $arg3 –- line number

Python python$target:::function-entry

• arg0 –- source file name
• arg1 –- function name

python.function.entry

• $arg1 –- source file name
• $arg2 –- function name

PHP function-entry

• arg0 — function name
• arg1 — file name
• arg2 — line number
• arg3 — class name
• arg4 — scope operator ::

process("...").mark("function__entry")

• $arg1 — function name
• $arg2 — file name
• $arg3 — line number
• $arg4 — class name
• $arg5 — scope operator ::

*requires -XX:+DTraceMethodProbes

Appendix C. Cheatsheet204

Bus and disk drivers

Request

SCSI stack

I/O scheduler

ioblock.request
io:::start

scsi.ioentry
scsi_init_pkt:entry

scsi.iodispatching
sd_add_buf_to_waitq:entry

scsi.ioexecute
sdt:::scsi-transport-dispatch

scsi.iodone
sd_return_command:entry

scsi.iocompleted

12 77 32 24

Block I/O layer

BIO requestSCSI packet

VFS layer and syscalls

ioscheduler.elv_completed_request

ioblock.end
io:::done

ioscheduler.elv_add_request

interrupt

kernel.function("ip_rcv")
ip:::receive

netdev.rx
mac_rx_common:entry

socket.*
syscall.*

syscall::*:entry

tcp.receive
tcp.recvmsg

 tcp:::receive

kernel.function("tcp_v4_hnd_req")
tcp:::accept-*

netdev.transmit
netdev.hard_transmit
mac_tx:entry

kernel.function("ip_rcv")
ip:::receive

tcp.sendmsg
tcp:::send

kernel.function("tcp_v4_connect")
tcp:::connect-*

tcp.disconnect
tcp_disconnect:entry

Receive
ring buffer

Send
ring bufferNetwork Card

DMA DMA

IP transmit

TCP transmit

sendmsg()

shutdown() connect()

IP receive

TCP receive

recvmsg()bind()

accept()

listen()

Connection:
 - state
 - peer addresses

Socket

N
IC drivers

IP
TCP

Sockets

NIC

Index

A

, 41address space

, 46aggregation

, 107anonymous memory

, 33arguments of probe

, 45associative array

, 131asynchronicity

B

, 56backtrace

, 123block input-output

, 144bottom half

, 17buffer

C

, 58call tree

, 98CGroup (Linux)

, 97Completely Fair Scheduler (Linux)

, 143condition variable (Solaris)

, 24conditional compilation

, 17consumer

, 35context function

, 35context of probe

, 74context switch

, 63cpc (provider, DTrace)

, 75current pointer (Linux)

, 78curthread (Solaris)

D

, 22Deadman mechanism

, 19debuginfo packages (Linux)

, 121dentry cache (Linux)

, 18destructive actions

, 121
Directory Name Lookup Cache

(Solaris)

, 18dtrace(1M)

, 49dumping memory

, 55dynamic program analysis

, 17dynamic tracing

E

, 26Embedded C (SystemTap)

, 51epilogue probe alias

F

, 117file system

, 131fsflush (Solaris)

, 120fsinfo (provider, DTrace)

205Appendix C. Cheatsheet

, 28function boundary tracing

, 26functions (SystemTap)

H

, 156hotspot (provider, DTrace)

, 156hotspot (tapset, SystemTap)

I

, 144interrupt

, 123io (provider, DTrace)

, 123ioblock (tapset, SystemTap)

, 124ioscheduler (tapset, SystemTap)

, 138ip (provider, Solaris)

J

, 159Java Statically Defined Tracing

, 153Java Virtual Machine

K

, 38kernel (external) variables

, 83kprocess (tapset, SystemTap)

L

, 65latency

, 138lock

, 140lockstat (provider, DTrace)

M

, 22MAXMAPENTRIES (constant)

, 115memory allocator

, 24missing probe

, 48monotonic time

, 138mutex

N

, 134network stack

O

, 117open file table

P

, 122page cache

, 109page fault

, 64perf (tapset, SystemTap)

, 65performance analysis

, 146pid$$ (provider, DTrace)

, 41pointer

, 35predicate

, 49printing

, 27probe

, 22probe overhead threshold

, 83proc (provider, DTrace)

Appendix C. Cheatsheet206

, 74process

, 83process, spawning

, 36processes, grabbing PID

, 63processor performance counter

, 62profiling

, 51prologue probe alias

, 28provider (DTrace)

R

, 132request extraction

, 33return value

, 135ring buffer

, 20runtime (SystemTap)

S

, 88sched (provider, DTrace)

, 87scheduler

, 88scheduler (tapset, SystemTap)

, 25script

, 124scsi (tapset, SystemTap)

, 124SCSI stack

, 106segments

, 134socket

, 50speculations

, 56stack

, 21stap(1)

, 30statically defined tracing

, 137STREAMS (Solaris)

, 43string operations

, 43structure field access

, 57symbols

T

, 24, 51tapset

, 74task (Linux)

, 145taskqueue (Solaris)

, 138tcp (provider, Solaris)

, 40thread-local variables

, 65throughput

, 31timer probes

, 50translators (DTrace)

, 26try/catch block (SystemTap)

, 12TSLoad workload generator

U

, 146userspace process tracing

V

, 38variable scopes

207Appendix C. Cheatsheet

, 37variable types

, 105virtual memory

, 107vm (tapset, SystemTap)

W

, 141wait queue (Linux)

, 48wall-clock time

, 145workqueue (Linux)

, 131writeback (Linux)

Appendix C. Cheatsheet208

	Introduction
	Foreword
	Typographic conventions
	TSLoad workload generator
	Operating system Kernel

	Module 1: Dynamic tracing tools. dtrace and stap tools
	Tracing
	Dynamic tracing
	DTrace
	SystemTap
	Safety and errors
	Stability

	Module 2: Dynamic tracing languages
	Introduction
	Probes
	Arguments
	Context
	Predicates
	Types and Variables
	Pointers
	Strings and Structures
	Exercise 1
	Associative arrays and aggregations
	Time
	Printing and speculations
	Tapsets & translators
	Exercise 2

	Module 3: Principles of dynamic tracing
	Applying tracing
	Dynamic code analysis
	Profiling
	Performance analysis
	Pre- and post-processing
	Vizualization

	Module 4: Operating system kernel tracing
	Process management
	Exercise 3
	Process scheduler
	Virtual Memory
	Exercise 4
	Virtual File System
	Block Input-Output
	Asynchronicity in kernel
	Exercise 5
	Network Stack
	Synchronization primitives
	Interrupt handling and deferred execution

	Module 5: Application tracing
	Userspace process tracing
	Unix C library
	Exercise 6
	Java Virtual Machine
	Non-native languages
	Web applications
	Exercise 7

	Appendix A. Exercise hints and solutions
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7

	Appendix B. Lab setup
	Setting up Operating Systems
	iSCSI
	Web application stack

	Appendix C. Cheatsheet
	Cheatsheet

